Skip to main content

GPU and FPGA Parallelization of Fuzzy Cellular Automata for the Simulation of Wildfire Spreading

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics

Abstract

This paper presents a Fuzzy Cellular Automata (FCA) model with the aim to cope with the computational complexity and data uncertainties that characterize the simulation of wildfire spreading on real landscapes. Moreover, parallel implementations of the proposed FCA model, on both GPU and FPGA, are discussed and investigated. According to the results, the parallel models exhibit significant speedups over the corresponding sequential algorithm. As a possible application, the proposed model could be embedded on a portable electronic system for real-time prediction of fire spread scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. Technical report INT-115, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT (1972)

    Google Scholar 

  2. Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using cellular automata. Ecol. Model. 99, 87–97 (1997)

    Article  Google Scholar 

  3. Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new algorithm for simulating wildfire spread through cellular automata. ACM Trans. Model. Comput. Simul. 22, 1–26 (2011)

    Article  Google Scholar 

  4. Avolio, M.V., Di Gregorio, S., Trunfio, G.A.: A randomized approach to improve the accuracy of wildfire simulations using cellular automata. J. Cell. Automata 9(3–4), 209–223 (2014)

    MathSciNet  Google Scholar 

  5. Di Gregorio, S., Filippone, G., Spataro, W., Trunfio, G.A.: Accelerating wildfire susceptibility mapping through GPGPU. J. Parallel Distrib. Comput. 73(8), 1183–1194 (2013)

    Article  Google Scholar 

  6. Progias, P., Sirakoulis, G.C.: An FPGA processor for modelling wildfire spreading. Math. Comput. Model. 57, 1436–1452 (2013)

    Article  MathSciNet  Google Scholar 

  7. Mraz, M., Zimic, N., Lapanja, I., Bajec, I.: Fuzzy cellular automata: from theory toapplications. In: 12th IEEE International Conference on Tools with Artificial Intelligence, pp. 320–323 (2000)

    Google Scholar 

  8. von Neumann, J.: Theory of Self Reproducing Automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  9. Kalogeiton, V.S., Papadopoulos, D.P., Georgilas, I.P., Sirakoulis, G.C., Adamatzky, A.I.: Cellular automaton model of crowd evacuation inspired by slime mould. Int. J. Gen. Syst. 43(4), 354–391 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Saravakos, P., Sirakoulis, G.C.: Modeling behavioral traits of employees in a workplace with cellular automata. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part II. LNCS, vol. 8385, pp. 689–698. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  11. Sirakoulis, G., Adamatzky, A.: Robots and Lattice Automata. Springer, Heidelberg (2015)

    Book  Google Scholar 

  12. Was, J., Sirakoulis, G.C., Bandini, S.: Cellular Automata, Proceedings of 11th International Conference on Cellular Automata for Research and Industry, ACRI 2014, vol. 8751. Springer, Heidelberg (2014)

    MATH  Google Scholar 

  13. Artés, T., Cencerrado, A., Corts, A., Margalef, T.: Enhancing computational efficiency on forest fire forecasting by time-aware Genetic Algorithms. J. Supercomput. 71(5), 1869–1881 (2015)

    Article  Google Scholar 

  14. Xue, H., Gu, F., Hu, X.: Data assimilation using sequential Monte Carlo methods in wildfire spread simulation. ACM Trans. Model. Comput. Simul. 22(4), 23 (2012)

    Article  Google Scholar 

  15. Topa, P.: Cellular automata model tuned for efficient computation on GPU with global memory cache. In: PDP 2014 Proceedings, pp. 380–383 (2014)

    Google Scholar 

  16. Was, J., Mrz, H., Topa, P.: GPGPU computing for microscopic simulations of crowd dynamics, Computing and Informatics (2014, in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Ch. Sirakoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ntinas, V.G., Moutafis, B.E., Trunfio, G.A., Sirakoulis, G.C. (2016). GPU and FPGA Parallelization of Fuzzy Cellular Automata for the Simulation of Wildfire Spreading. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science(), vol 9574. Springer, Cham. https://doi.org/10.1007/978-3-319-32152-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32152-3_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32151-6

  • Online ISBN: 978-3-319-32152-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics