Abstract
This paper presents a Fuzzy Cellular Automata (FCA) model with the aim to cope with the computational complexity and data uncertainties that characterize the simulation of wildfire spreading on real landscapes. Moreover, parallel implementations of the proposed FCA model, on both GPU and FPGA, are discussed and investigated. According to the results, the parallel models exhibit significant speedups over the corresponding sequential algorithm. As a possible application, the proposed model could be embedded on a portable electronic system for real-time prediction of fire spread scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. Technical report INT-115, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT (1972)
Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using cellular automata. Ecol. Model. 99, 87–97 (1997)
Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new algorithm for simulating wildfire spread through cellular automata. ACM Trans. Model. Comput. Simul. 22, 1–26 (2011)
Avolio, M.V., Di Gregorio, S., Trunfio, G.A.: A randomized approach to improve the accuracy of wildfire simulations using cellular automata. J. Cell. Automata 9(3–4), 209–223 (2014)
Di Gregorio, S., Filippone, G., Spataro, W., Trunfio, G.A.: Accelerating wildfire susceptibility mapping through GPGPU. J. Parallel Distrib. Comput. 73(8), 1183–1194 (2013)
Progias, P., Sirakoulis, G.C.: An FPGA processor for modelling wildfire spreading. Math. Comput. Model. 57, 1436–1452 (2013)
Mraz, M., Zimic, N., Lapanja, I., Bajec, I.: Fuzzy cellular automata: from theory toapplications. In: 12th IEEE International Conference on Tools with Artificial Intelligence, pp. 320–323 (2000)
von Neumann, J.: Theory of Self Reproducing Automata. University of Illinois Press, Urbana (1966)
Kalogeiton, V.S., Papadopoulos, D.P., Georgilas, I.P., Sirakoulis, G.C., Adamatzky, A.I.: Cellular automaton model of crowd evacuation inspired by slime mould. Int. J. Gen. Syst. 43(4), 354–391 (2015)
Saravakos, P., Sirakoulis, G.C.: Modeling behavioral traits of employees in a workplace with cellular automata. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part II. LNCS, vol. 8385, pp. 689–698. Springer, Heidelberg (2014)
Sirakoulis, G., Adamatzky, A.: Robots and Lattice Automata. Springer, Heidelberg (2015)
Was, J., Sirakoulis, G.C., Bandini, S.: Cellular Automata, Proceedings of 11th International Conference on Cellular Automata for Research and Industry, ACRI 2014, vol. 8751. Springer, Heidelberg (2014)
Artés, T., Cencerrado, A., Corts, A., Margalef, T.: Enhancing computational efficiency on forest fire forecasting by time-aware Genetic Algorithms. J. Supercomput. 71(5), 1869–1881 (2015)
Xue, H., Gu, F., Hu, X.: Data assimilation using sequential Monte Carlo methods in wildfire spread simulation. ACM Trans. Model. Comput. Simul. 22(4), 23 (2012)
Topa, P.: Cellular automata model tuned for efficient computation on GPU with global memory cache. In: PDP 2014 Proceedings, pp. 380–383 (2014)
Was, J., Mrz, H., Topa, P.: GPGPU computing for microscopic simulations of crowd dynamics, Computing and Informatics (2014, in press)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Ntinas, V.G., Moutafis, B.E., Trunfio, G.A., Sirakoulis, G.C. (2016). GPU and FPGA Parallelization of Fuzzy Cellular Automata for the Simulation of Wildfire Spreading. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science(), vol 9574. Springer, Cham. https://doi.org/10.1007/978-3-319-32152-3_52
Download citation
DOI: https://doi.org/10.1007/978-3-319-32152-3_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32151-6
Online ISBN: 978-3-319-32152-3
eBook Packages: Computer ScienceComputer Science (R0)