Skip to main content

Multistage Approach for Simple Kidney Cysts Segmentation in CT Images

  • Chapter
  • First Online:
New Approaches in Intelligent Image Analysis

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 108))

Abstract

In the chapter is presented a multistage approach for segmentation of medical objects in Computed Tomography (CT) images. Noise reduction with consecutive applied median filter and wavelet shrinkage packet decomposition, and contrast enhancement based on Contrast limited adaptive histogram equalization (CLAHE) are applied in preprocessing stage. As a next step is used a combination of 2 basic methods for image segmentation such as split and merge algorithm, following by color based K-mean clustering. For refining the boundaries of the detected objects additional texture analysis is introduced based on limited Haralick’s feature set and morphological filters. Due to the diminished number of components for the feature vectors the speed of the segmentation stage is higher in comparison with the full feature set. Some experimental results are presented, obtained by computer simulation in the MATLAB environment. The experimental results give detailed information about detected simple renal cysts and their boundaries in axial plane of CT images which are presented in native, arterial and venous phases. The proposed approach can be used in real time for precise diagnosis or in monitoring the disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eknoyan, G.: A clinical view of simple and complex renal cysts. J. Am. Soc. Nephrol. 20, 1874–1876 (2009)

    Article  Google Scholar 

  2. Glassberg, K.I.: Renal dysgenesis and cystic disease of the kidney. In: Wein, A.J., Kavousi, L.R., Novick, A.C., Partin, W.A., Peters, C.A. (eds.) Campbell-Walsh Urology, 9th edn, pp. 3343–3348. W.B. Saunders, Philadelphia (2007)

    Google Scholar 

  3. Jose, J.S., Sivakami, R., Uma Maheswari, N., Venkatesh, R.: An efficient diagnosis of kidney images using association rules. Int. J. Comput. Technol. Electron. Eng. (IJCTEE), 2, 14–20 (2013). ISSN: 2249-6343

    Google Scholar 

  4. Chapman, A., Guay-Woodford, L., Granrham, J., et al.: Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD). Consort. Radiol. Imaging Stud. Polycystic Kidney Dis. (CRISP) Cohort. Kidney Int. 64, 1035–1045 (2003)

    Google Scholar 

  5. Battiato, S., Farinella, G.M., Gallo, G., Garretto, O., Privitera, C.: Objective Analysis of Simple Kidney Cysts from CT Images, IEEE International Workshop on Medical Measurements and Applications, pp. 146–149, Certalo, Italy (2009). ISBN: 978-1-4244-3598-2

    Google Scholar 

  6. Mekhaldi, N., Benyttou, M.: Detection of renal cysts by method of SVM classification. Ann. Comput. Sci. Series. 11th Tome 2nd Fasc. 67–71 (2013)

    Google Scholar 

  7. Pham, D., Xu, C., Prince, J.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2(1), 315–337 (2000)

    Article  Google Scholar 

  8. Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet another survey on image segmentation: region and boundary information integration. In: Computer Vision—ECCV, pp. 408–422. Springer, Berlin (2002)

    Google Scholar 

  9. van Ginneken, B., Katsuragawa, S., ter Haar Romeny, B., Viergever, M.: Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans. Med. Imaging 21(2), 139–149 (2002)

    Google Scholar 

  10. Felipe, J., Traina, A., Traina Jr., C.: Retrieval by content of medical images using texture for tissue identification. In: Proceedings of the 16th IEEE Symposium on Computer-Based Medical Systems, pp. 175–180 (2003)

    Google Scholar 

  11. Castellano, G., Bonilha, L., Li, L., Cendes, F.: Texture analysis of medical images. Clin. Radiol. 59(12), 1061–1069 (2004)

    Article  Google Scholar 

  12. Glatard, T., Montagnat, J., Magnin, I.: Texture based medical image indexing and retrieval: application to cardiac imaging. In: Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, pp. 135–142 (2004)

    Google Scholar 

  13. Pham, M., Susomboon, R., Disney, T., Raicu, D., Furst, J.: A comparison of texture models for automatic liver segmentation. In: Medical Imaging, International Society for Optics and Photonics, pp. 65124E–65124E (2007)

    Google Scholar 

  14. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  15. Haralick, R.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  16. Pal, N., Pal, S.: A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  17. Tuceryan, M., Jain, A.: Texture analysis. In: Chen, C., Pau, L., Wang, P. (eds.) The Handbook of Pattern Recognition and Computer Vision, 2nd edn. pp. 207–248. World Scientific Publishing Co (1998)

    Google Scholar 

  18. Malpica, N., Ortuño, J., Santos, A.: A multichannel watershed-based algorithm for supervised texture segmentation. Pattern Recogn. Lett. 24(9), 1545–1554 (2003)

    Article  MATH  Google Scholar 

  19. Tesar, L., Smutek, D., Shimizu, A., Kobatake, H.: 3D extension of haralick texture features for medical image analysis. In: SPPR 2007 Proceedings of the Fourth Conference on IASTED International Conference, pp. 350–355 (2007)

    Google Scholar 

  20. Tesař, L., Shimizu, A., Smutek, D., Kobatake, H., Nawano, S.: Medical image analysis of 3D CT images based on extension of haralick texture features. Comput. Med. Imaging Graph. 32(6), 513–520 (2008)

    Article  Google Scholar 

  21. Gueld, M., Keysers, D., Deselaers, T., Leisten, M., Schubert, H., Ney, H., Lehmann, T.: Comparison of global features for categorization of medical images. In: Medical Imaging, International Society for Optics and Photonics, pp. 211–222 (2004)

    Google Scholar 

  22. Chuctaya, H., Portugal, C., Beltran, C., Gutierrez, J., Lopez, C., Tupac, Y.: M-CBIR: a medical content-based image retrieval system using metric Data-Structures. In: SCCC, pp. 135–141 (2011)

    Google Scholar 

  23. El-Dahshana, E.-S.A., Hosnyb, T., Salem, A.-B.M.: Hybrid intelligent techniques for MRI brain images classification. Elsevier, Digital Signal Proc. 20, 433–441 (2010)

    Google Scholar 

  24. Chaddad, A., Tanougast, C., Dandache, A., Bouridane, A.: Extracted Haralick’s texture features and morphological parameters from segmented multispectrale texture Bio-Images for classification of colon cancer cells. WSEAS Trans. Biol. Biomed. 8, 39–50 (2011)

    Google Scholar 

  25. Chen, E., Chung, P., Chen, C., Tsai, H., Chang, C.: An automatic diagnostic system for CT Liver image classification. IEEE Trans. Biomed. Eng. 45(6), 783–794 (1998)

    Article  Google Scholar 

  26. Howarth, P., Ruger, S.: Robust texture features for still-image retrieval. IEE Proc. Vis. Image Signal Process. 152(6), 868–874 (2005)

    Google Scholar 

  27. Boas, F., Fleischmann, D.: CT artifacts: causes and reduction techniques. Imaging Med. 4(2), 229–240 (2012)

    Article  Google Scholar 

  28. Chhabra, Tarandeep, Dua, Geetika, Malhotra, Tripti: Comparative analysis of methods to denoise CT Scan Images. Int. Adv. Res. Electrical, Electronics and Instrumentation Eng. 2(7), 3363–3369 (2013)

    Google Scholar 

  29. Georgieva, V., Kountchev, R., Draganov, I.: An adaptive approach for noise reduction in sequences of CT images. Adv. Int. Comput. Technol. Decis. Support Syst, Springer 486, 43–52 (2014)

    Google Scholar 

  30. Zeyong, S., Aviyente, S.: Image denoising based on the wavelet co-occurrence matrix. IEEE Trans. Image Process. 9(9), 1522–1531(2000)

    Google Scholar 

  31. Coifmann, R., Wickerhauser, M.: Entropy based algorithms for best basis selection. IEEE Trans. Inf. Theory 38, 713–718 (1992)

    Article  MATH  Google Scholar 

  32. MATLAB User’s Guide. www.mathworks.com

  33. Xu, Z., Lin, X., Chen, X.: For removal from video sequences using contrast limited histogram equalization. In: Proceedings of the International Conference on Computational Intelligence and Software Engineering, pp.1–4. IEEE Xplore Press, Wuhan (2009)

    Google Scholar 

  34. Faruquzzaman, A.B.M., Paiker, N.R., Arafat, J., Karim, Z., Ameer Ali, M.: Object segmentation based on split and merge algorithm. In: IEEE Region 10 Conference TENCON 2008, pp.1–4 (2008)

    Google Scholar 

  35. Rakesh, M., Ravi, T.: Image segmentation and detection of tumor objects in MR brain images using FUZZY C-MEANS (FCM) algorithm. Int. J. Eng. Res. Appl. (IJERA), 2(3), 2088–2094 (2012). ISSN: 2248-9622

    Google Scholar 

  36. El-Dahshan, E.-S.A., Mohsen, H.M., Revett, K., Salem, A.-B.M.: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Elsevier, Expert Syst. Appl. 41, pp. 5526–5545 (2014)

    Google Scholar 

  37. Leung, C.-K., Lam, F.-K.: Image segmentation using maximum entropy method. In: International Symposium on. IEEE Speech, Image Processing and Neural Networks, Proceedings, ISSIPNN’94, pp. 29–32 (1994)

    Google Scholar 

Download references

Acknowledgement

The authors gratefully thank Professor Dr. V. Hadjidekov and Dr. Genov at the Department of Image Diagnostic on the Medical Academy in Sofia for the images and advices by the investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veska Georgieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Georgieva, V., Draganov, I. (2016). Multistage Approach for Simple Kidney Cysts Segmentation in CT Images. In: Kountchev, R., Nakamatsu, K. (eds) New Approaches in Intelligent Image Analysis. Intelligent Systems Reference Library, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-319-32192-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32192-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32190-5

  • Online ISBN: 978-3-319-32192-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics