Abstract
In this paper, we present the extension of the fuzzy possibilistic C-means (FPCM) algorithm using type-2 fuzzy logic techniques, with the goal of improving the performance of this algorithm. We also performed the comparison of this proposed algorithm against the interval type-2 fuzzy C-means (IT2FCM) algorithm to observe whether the proposed approach performs better than this algorithm. The proposed extension was realized considering both of the weight exponents (fuzzy and possibilistic), m and η, as interval fuzzy sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, Berlin (1981)
Hirota, K., Pedrycz, W.: Fuzzy computing for data mining. Proc. IEEE 87(9), 1575–1600 (1999)
Iyer, N.S., Kendel, A., Schneider, M.: Feature-based fuzzy classification for interpretation of mammograms. Fuzzy Sets Syst. 114, 271–280 (2000)
Philips, W.E., Velthuinzen, R.P., Phuphanich, S., Hall, L.O., Clark, L.P., Sibiger, M.L.: Aplication of fuzzy C-means segmentation technique for tissue differentiation in MR images of hemorrhagic glioblastoma multiforme. Magn. Reson. Imaging 13(2), 277–290 (1995)
Yang, M.-S., Hu, Y.-J., Lin, K.C.-R., Lin, C.C.-L.: Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. Magn. Reson. Imaging 20, 173–179 (2002)
Chang, X., Li, W., Farrell, J.: A C-means clustering based fuzzy modeling method. In: Fuzzy Systems, 2000. The Ninth IEEE International Conference on FUZZ IEEE 2000, vol. 2, pp. 937–940 (2000)
Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98, 110 (1993)
Pal, N.R., Pal, K., Bezdek, J.C.: A mixed C-means clustering model. In: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, 1997, vol. 1, pp. 11, 21, 1–5 Jul 1997
Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy C-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)
Karnik, N., Mendel, M.: Operations on type-2 set. Fuzzy Set Syst. 122, 327–348 (2001)
Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and new directions. Prentice-Hall Inc., Upper Saddle River (2001)
Rhee, F.C., Hwang, C.: A type-2 fuzzy C-means clustering algorithm. In: Annual Conference of the North American Fuzzy Information Processing Society, vol. 4, pp. 1926–1929 (2001)
Hwang, C., Rhee, F.C.-H.: Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Trans. Fuzzy Syst. 15(1), 107, 120 (2007)
Zarandi, M.H.F., Zarinbal, M., Türksen, I.B.: Type-II fuzzy possibilistic C-mean clustering. In: IFSA/EUSFLAT Conference, pp. 30–35 (2009)
Choi, B., Rhee, F.: Interval type-2 fuzzy membership function generation methods for pattern recognition. Inf. Sci. 179(13), 2102–2122 (2009)
Rubio, E., Castillo, O.: Interval type-2 fuzzy clustering for membership function generation. In: 2013 IEEE Workshop on Hybrid Intelligent Models and Applications (HIMA), pp. 13, 18, 16–19 Apr 2013
Ceylan, R., Özbay, Y., Karlik, B.: A novel approach for classification of ECG arrhythmias: type-2 fuzzy clustering neural network. Expert Syst. Appl. 36(3), 6721–6726 (2009) (Part 2)
Tlig, L., Sayadi, M., Fnaeich, F.: A new descriptor for textured image segmentation based on fuzzy type-2 clustering approach. In: 2010 2nd International Conference on Image Processing Theory Tools and Applications (IPTA), pp. 258–263, 7–10 July 2010
Zarandi, M.H.F., Zarinbal, M.: A new image enhancement method type-2 possibilistic c-mean approach. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, pp. 1131, 1135, 24–28 June 2013
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Rubio, E., Castillo, O., Melin, P. (2016). Interval Type-2 Fuzzy Possibilistic C-Means Clustering Algorithm. In: Zadeh, L., Abbasov, A., Yager, R., Shahbazova, S., Reformat, M. (eds) Recent Developments and New Direction in Soft-Computing Foundations and Applications. Studies in Fuzziness and Soft Computing, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-319-32229-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-32229-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32227-8
Online ISBN: 978-3-319-32229-2
eBook Packages: EngineeringEngineering (R0)