Skip to main content

AI Reasoning Methods for Robotics

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Artificial intelligence (GlossaryTerm

AI

) reasoning technology involving, e. g., inference, planning, and learning, has a track record with a healthy number of successful applications. So can it be used as a toolbox of methods for autonomous mobile robots? Not necessarily, as reasoning on a mobile robot about its dynamic, partially known environment may differ substantially from that in knowledge-based pure software systems, where most of the named successes have been registered. Moreover, recent knowledge about the robot’s environment cannot be given a priori, but needs to be updated from sensor data, involving challenging problems of symbol grounding and knowledge base change.

This chapter sketches the main robotics-relevant topics of symbol-based AI reasoning. Basic methods of knowledge representation and inference are described in general, covering both logic- and probability-based approaches. The chapter first gives a motivation by example, to what extent symbolic reasoning has the potential of helping robots perform in the first place. Then (Sect. 14.2), we sketch the landscape of representation languages available for the endeavor. After that (Sect. 14.3), we present approaches and results for several types of practical, robotics-related reasoning tasks, with an emphasis on temporal and spatial reasoning. Plan-based robot control is described in some more detail in Sect. 14.4. Section 14.5 concludes.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

AAAI:

Association for the Advancement of Artificial Intelligence

AI:

artificial intelligence

BN:

Bayesian network

CDC:

cardinal direction calculus

CSP:

constraint satisfaction problem

DBN:

dynamic Bayesian network

DC:

disconnected

DL:

description logic

DPLL:

Davis–Putnam algorithm

ECAI:

European Conference on Artificial Intelligence

EC:

externally connected

FF:

fast forward

FOPL:

first-order predicate logic

HTN:

hierarchical task network

IA:

interval algebra

ICAPS:

International Conference on Automated Planning and Scheduling

IJCAI:

International Joint Conference on Artificial Intelligence

IPC:

international AI planning competition

KR:

knowledge representation

LTL:

linear temporal logic

MDP:

Markov decision process

NTPP:

nontangential proper part

OUR-K:

ontology based unified robot knowledge

OWL:

web ontology language

PA:

point algebra

PI:

policy iteration

POMDP:

partially observable Markov decision process

PO:

partially overlapping

POP:

partial-order planning

PRM:

probabilistic roadmap

RA:

rectangle algebra

RCC:

region connection calculus

SAT:

International Conference on Theory and Applications of Satisfiability Testing

SMT:

satisfiabiliy modulo theory

STP:

simple temporal problem

TAL:

temporal action logic

TCSP:

temporal constraint satisfaction problem

TL:

temporal logic

TPP:

tangential proper part

VI:

value iteration

W3C:

WWW consortium

References

  1. S. Harnad: The symbol grounding problem, Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  2. S. Coradeschi, A. Saffiotti: An introduction to the anchoring problem, Robotics Auton. Syst. 43(2/3), 85–96 (2003)

    Article  Google Scholar 

  3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (Eds.): The Description Logic Handbook (Cambridge Univ. Press, Cambridge 2003)

    MATH  Google Scholar 

  4. S.J. Russell, P. Norvig: Artificial Intelligence: A Modern Approach, 3rd edn. (Pearson Education, Upper Saddle River 2010)

    MATH  Google Scholar 

  5. R.J. Brachman, H.J. Levesque: Knowledge Representation and Reasoning (Morgan Kaufmann, San Francisco 2004)

    MATH  Google Scholar 

  6. W.O. van Quine: Methods of Logic, 4th edn. (Harvard Univ. Press, Cambridge 1982)

    Google Scholar 

  7. Z. Manna, R. Waldinger: The Deductive Foundations of Computer Programming: A One-Volume Version of ‘‘The Logical Basis for Computer Programming’’ (Addison-Wesley, Reading 1993)

    MATH  Google Scholar 

  8. W. Hodges: Elementary predicate logic. In: Handbook of Philosophical Logic, Vol. 1, ed. by D. Gabbay, F. Guenthner (D. Reidel, Dordrecht 1983)

    Google Scholar 

  9. A. Robinson, A. Voronkov (Eds.): Handbook of Automated Reasoning (Elsevier, Amsterdam 2001)

    MATH  Google Scholar 

  10. M. Davis, G. Logemann, D. Loveland: A machine program for theorem proving, Communications ACM 5(7), 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. The international SAT Competitions web page: http://www.satcompetition.org/

  12. The Web Ontology Language OWL: http://www.w3.org/TR/owl-features/

  13. OWL 2 Web Ontology Language Document Overview (Second Edition): http://www.w3.org/TR/owl2-overview/

  14. P. Hitzler, M. Krötzsch, S. Rudolph: Foundations of Semantic Web Technologies (Chapman Hall/CRC, Boca Raton 2009)

    Book  Google Scholar 

  15. J. McCarthy, P. Hayes: Some philosophical problems from the standpoint of artificial intelligence, Mach. Intell. 4, 463–507 (1969)

    MATH  Google Scholar 

  16. H. Levesque, R. Reiter, Y. Lespérance, F. Lin, R. Scherl: Golog: A logic programming language for dynamic domains, J. Log. Program. 31, 59–83 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Shanahan, M. Witkowski: High-level robot control through logic, ATAL ’00: Proc. 7th Int. Workshop Intell. Agents VII. Agent Theor. Archit. Lang. (2001) pp. 104–121

    Google Scholar 

  18. M. Thielscher: Reasoning Robots. The Art and Science of Programming Robotic Agents (Springer, Berlin 2005)

    MATH  Google Scholar 

  19. P. Doherty, J. Kvarnström: TALplanner: A temporal logic based planner, AI Magazine 22(3), 95–102 (2001)

    MATH  Google Scholar 

  20. K.L. Chung, F. AitSahila: Elementary Probability Theory, 4th edn. (Springer, Berlin, Heidelberg 2003)

    Book  Google Scholar 

  21. J. Pearl: Probabilistic Reasoning in Intelligent Systems (Morgan Kaufmann, San Mateo 1988)

    MATH  Google Scholar 

  22. A.R. Cassandra, L.P. Kaelbling, M.L. Littman: Acting Optimally in Partially Observable Stochastic Domains, Tech. Rep. AAAI-94 (Department of Computer Science, Brown University, Providence 1994) pp. 1023–1028

    Google Scholar 

  23. R.E. Bellman: Dynamic Programming (Princeton Univ. Press, Princeton 1957)

    MATH  Google Scholar 

  24. L.P. Kaelbling, T. Lozano-Pérez: Integrated task and motion planning in belief space, Int. J. Robotics Res. 32(9/10), 1194–1227 (2013)

    Article  Google Scholar 

  25. R.E. Fikes, N.J. Nilsson: Strips: A new approach to theorem proving in problem solving, J. Artif. Intell. 2, 189–208 (1971)

    Article  MATH  Google Scholar 

  26. P.E. Hart, N.J. Nilsson, B. Raphael: A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  27. M. Ghallab, D.S. Nau, P. Traverso: Automated Planning – Theory and Practice (Elsevier, Amsterdam 2004)

    MATH  Google Scholar 

  28. A. Pnueli: The temporal logic of programs, Proc. 18th Annu. Symp. Found. Comput. Sci., Providence (1977) pp. 46–57

    Google Scholar 

  29. O. Kupferman, M.Y. Vardi: Model checking of safety properties, Form. Methods Syst. Des. 19(3), 291–314 (2001)

    Article  MATH  Google Scholar 

  30. E. Plaku, L.E. Kavraki, M.Y. Vardi: Hybrid systems: From verification to falsification by combining motion planning and discrete search, Form. Methods Syst. Des. 34, 157–182 (2009)

    Article  MATH  Google Scholar 

  31. A. Bhatia, M.R. Maly, L.E. Kavraki, M.Y. Vardi: Motion planning with complex goals, IEEE Robotics Autom. Mag. 18(3), 55–64 (2011)

    Article  Google Scholar 

  32. M. Vilain, H. Kautz, P. van Beek: Constraint propagation algorithms for temporal reasoning: A revised report. In: Readings in Qualitative Reasoning About Physical Systems, ed. by D.S. Weld, J. de Kleer (Morgan Kaufmann, San Francisco 1990) pp. 373–381

    Chapter  Google Scholar 

  33. J. Allen: Towards a general theory of action and time, Artif. Intell. 23(2), 123–154 (1984)

    Article  MATH  Google Scholar 

  34. E.P.K. Tsang: Foundations of Constraint Satisfaction (Academic Press, London, San Diego 1993)

    Google Scholar 

  35. P. Jonsson, A. Krokhin: Complexity classification in qualitative temporal constraint reasoning, Artif. Intell. 160(1/2), 35–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Ligozat: A new proof of tractability for ORD-horn relations, AAAI Workshop Spat. Temp. Reason., Portland (1996)

    Google Scholar 

  37. U. Montanari: Networks of constraints: Fundamental properties and applications to picture processing, Inf. Sci. 7, 95–132 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  38. R.W. Floyd: Algorithm 97: Shortest path, Communications ACM 5(6), 345 (1962)

    Article  Google Scholar 

  39. L. Xu, B.Y. Choueiry: A new efficient algorithm for solving the simple temporal problem, Proc. 4th Int. Conf. Temp. Log., Cairns (2003)

    Google Scholar 

  40. L.R. Planken, M.M. De Weerdt, R.P.J. van der Krogt: P3C: A new algorithm for the simple temporal problem, Proc. Int. Conf. Autom. Plan. Sched. (ICAPS), Sydney (2008) pp. 256–263

    Google Scholar 

  41. C. McGann, F. Py, K. Rajan, J. Ryan, R. Henthorn: Adaptive control for autonomous underwater vehicles, Proc. 23rd Natl. Conf. Artif. Intell., Chicago (2008) pp. 1319–1324

    Google Scholar 

  42. B.C. Williams, M.D. Ingham, S.H. Chung, P.H. Elliott: Model-based programming of intelligent embedded systems and robotic space explorers, Proceedings IEEE 91(1), 212–237 (2003)

    Article  Google Scholar 

  43. T. Vidal, H. Fargier: Handling contingency in temporal constraint networks: From consistency to controllabilities, J. Exp. Theor. Artif. Intell. 11, 23–45 (1999)

    Article  MATH  Google Scholar 

  44. P. Doherty, J. Kvarnström, F. Heintz: A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems, J. Auton. Agents Multi-Agent Syst. 2(2), 332–377 (2009)

    Article  Google Scholar 

  45. F. Pecora, M. Cirillo, F. Dell’Osa, J. Ullberg, A. Saffiotti: A constraint-based approach for proactive, context-aware human support, J. Ambient Intell. Smart Environ. 4(4), 347–367 (2012)

    Article  Google Scholar 

  46. R. Dechter: Constraint Processing, The Morgan Kaufmann Series in Artificial Intelligence (Morgan Kaufmann, San Francisco 2003) pp. 155–165

    Google Scholar 

  47. A. Loutfi, S. Coradeschi, M. Daoutis, J. Melchert: Using knowledge representation for perceptual anchoring in a robotic system, Int. J. Artif. Intell. Tools 17(5), 925–944 (2008)

    Article  Google Scholar 

  48. O. Colliot, O. Camara, I. Bloch: Integration of fuzzy spatial relations in deformable models – Application to brain MRI segmentation, Pattern Recogn. 39(8), 1401–1414 (2006)

    Article  Google Scholar 

  49. X. Wang, J.M. Keller, P. Gader: Using spatial relationships as features in object recognition, Annu. Meet. North Am. Fuzzy Inf. Proces. Soc., Syracuse (1997)

    Google Scholar 

  50. D.A. Randell, Z. Cui, A.G. Cohn: A Spatial Logic based on Regions and Connection, Proc. Int. Conf. Princ. Knowl. Represent. Reason., Cambridge (1992)

    Google Scholar 

  51. S. Skiadopoulos, M. Koubarakis: Composing cardinal direction relations, Artif. Intell. 152(2), 143–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Renz, B. Nebel: Qualitative spatial reasoning using constraint calculi. In: Handbook of Spatial Logics, ed. by M. Aiello, I. Pratt-Hartmann, J.F.A.K. van Benthem (Springer, Berlin, Heidelberg 2007) pp. 161–215

    Chapter  Google Scholar 

  53. T. Drakengren, P. Jonsson: A complete classification of tractability in Allen’s algebra relative to subsets of basic relations, Artif. Intell. 106(2), 205–219 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. A.G. Cohn, J. Renz, M. Sridhar: Thinking inside the box: A comprehensive spatial representation for video analysis, Proc. 13th Int. Conf. Princ. Knowl. Represent. Reason., Rome (2012) pp. 588–592

    Google Scholar 

  55. P. Balbiani, J.-F. Condotta, L. Farinas Del Cerro: A new tractable subclass of the rectangle algebra, Proc. 16th Int. Jt. Conf. Artif. Intell., Stockholm (1999) pp. 442–447

    Google Scholar 

  56. M. Mansouri, F. Pecora: A representation for spatial reasoning in robotic planning, Proc. IROS Workshop AI-Based Robotics, Tokyo (2013)

    Google Scholar 

  57. M. Mansouri, F. Pecora: More knowledge on the table: Planning with space, time and resources for robots, IEEE Int. Conf. Robotics Autom. (ICRA), Hong Kong (2014) pp. 647–654

    Google Scholar 

  58. M. Skubic, D. Perzanowski, S. Blisard, A. Schultz, W. Adams, M. Bugajska, D. Brock: Spatial language for human-robot dialogs, IEEE Trans. Syst. Man Cybern. C 34(2), 154–167 (2004)

    Article  Google Scholar 

  59. R. Moratz, T. Tenbrink: Spatial reference in linguistic human-robot interaction: Iterative, empirically supported development of a model of projective relations, Spat. Cogn. Comput. 6(1), 63–107 (2006)

    Article  Google Scholar 

  60. S. Guadarrama, L. Riano, D. Golland, D. Gouhring, Y. Jia, D. Klein, P. Abbeel, T. Darrell: Grounding spatial relations for human-robot interaction, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Tokyo (2013) pp. 1640–1647

    Google Scholar 

  61. L. Kunze, K.K. Doreswamy, N. Hawes: Using qualitative spatial relations for indirect object search, IEEE Int. Conf. Robotics Autom. (ICRA), Hong Kong (2014) pp. 163–168

    Google Scholar 

  62. L. Mosenlechner, M. Beetz: Parameterizing actions to have the appropriate effects, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., San Francisco (2011) pp. 4141–4147

    Google Scholar 

  63. A. Gaschler, R.P.A. Petrick, M. Giuliani, M. Rickert, A. Knoll: KVP: A knowledge of volumes approach to robot task planning, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Tokyo (2013) pp. 202–208

    Google Scholar 

  64. G. Havur, K. Haspalamutgil, C. Palaz, E. Erdem, V. Patoglu: A case study on the Tower of Hanoi challenge: Representation, reasoning and execution, IEEE Int. Conf. Robotics Autom. (ICRA), Tokyo (2013) pp. 4552–4559

    Google Scholar 

  65. L. de Silva, A.K. Pandey, R. Alami: An interface for interleaved symbolic-geometric planning and backtracking, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Tokyo (2013) pp. 232–239

    Google Scholar 

  66. L.P. Kaelbling, T. Lozano-Pérez: Hierarchical task and motion planning in the now, IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 1470–1477

    Google Scholar 

  67. F. Lagriffoul, D. Dimitrov, A. Saffiotti, L. Karlsson: Constraint propagation on interval bounds for dealing with geometric backtracking, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Vilamoura (2012) pp. 957–964

    Google Scholar 

  68. G. de Giacomo, L. Iocchi, D. Nardi, R. Rosati: Moving a robot: the KR&R approach at work, Proc. 5th Int. Conf. Princ. Knowl. Represent. Reason. (KR’96), Cambridge (1996) pp. 198–209

    Google Scholar 

  69. R. Hartanto, J. Hertzberg: Fusing DL reasoning with HTN planning, Lect. Notes Comput. Sci. 5243, 62–69 (2008)

    Article  Google Scholar 

  70. C. Galindo, J.A. Fernandez-Madrigal, J. Gonzalez, A. Saffiotti: Using semantic information for improving efficiency of robot task planning, Proc. ICRA-07 Workshop Semant. Inf. Robotics, Rome (2007) pp. 27–32

    Google Scholar 

  71. W. Cushing, S. Kambhampati, Mausam, D.S. Weld: When is temporal planning really temporal?, Proc. 20th Int. Jt. Conf. Artif. Intell., Hyderabad (2007)

    Google Scholar 

  72. J.L. Bresina, A.K. Jónsson, P.H. Morris, K. Rajan: Activity planning for the Mars exploration rovers, Proc. 15th Int. Conf. Autom. Plan. Sched. (ICAPS), Monterey (2005) pp. 1852–1859

    Google Scholar 

  73. M. Cirillo, F. Pecora, H. Andreasson, T. Uras, S. Koenig: Integrated motion planning and coordination for industrial vehicles, Proc. 24th Int. Conf. Autom. Plan. Sched. (ICAPS), Portsmouth (2014)

    Google Scholar 

  74. S. Fratini, F. Pecora, A. Cesta: Unifying planning and scheduling as timelines in a component-based perspective, Arch. Control Sci. 18(2), 231–271 (2008)

    MathSciNet  MATH  Google Scholar 

  75. M. Ghallab, H. Laruelle: Representation and control in IxTeT, a temporal planner, Proc. 2nd Int. Conf. Artif. Intell. Plan. Syst. (AIPS-94), Chicago (1994) pp. 61–67

    Google Scholar 

  76. P. Gregory, D. Long, M. Fox, J.C. Beck: Planning modulo theories: Extending the planning paradigm, Proc. 15th Int. Conf. Autom. Plan. Sched. (ICAPS), São Paulo (2012)

    Google Scholar 

  77. R. Nieuwenhuis, A. Oliveras, C. Tinelli: Solving SAT and SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T), Journal ACM 53, 937–977 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  78. S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, L.E. Kavraki: SMT-based synthesis of integrated task and motion plans for mobile manipulation, IEEE Int. Conf. Robotics Autom. (ICRA), Hong Kong (2014)

    Google Scholar 

  79. U. Köckemann, L. Karlsson, F. Pecora: Grandpa hates robots – Interaction constraints for planning in inhabited environments, Proc. 28th Conf. Artif. Intell., Quebéc City (2014)

    Google Scholar 

  80. M. Di Rocco, F. Pecora, A. Saffiotti: When robots are late: Configuration planning for multiple robots with dynamic goals, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Tokyo (2013)

    Google Scholar 

  81. G.H. Lim, I.H. Suh, H. Suh: Ontology-based unified robot knowledge for service robots in indoor environments, IEEE Trans. Syst. Man Cybern. A 41(3), 492–509 (2011)

    Article  Google Scholar 

  82. S. Lemaignan, R. Ros, L. Mösenlechner, R. Alami, M. Beetz: ORO, a knowledge management module for cognitive architectures in robotics, Proc. 2010 IEEE/RSJ Int. Conf. Intell. Robots Syst., Taipei (2010) pp. 3548–3553

    Google Scholar 

  83. M. Tenorth, M. Beetz: KnowRob – A knowledge processing infrastructure for cognition-enabled robots, Int. J. Robotics Res. 32(5), 566–590 (2013)

    Article  Google Scholar 

  84. M. Daoutis, S. Coradeschi, A. Loutfi: Grounding commonsense knowledge in intelligent systems, J. Ambient Intell. Smart Environ. 1(4), 311–321 (2009)

    Article  Google Scholar 

  85. A. Saffiotti, M. Broxvall, M. Gritti, K. LeBlanc, R. Lundh, J. Rashid, B.S. Seo, Y.J. Cho: The PEIS-Ecology project: Vision and results, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nice (2008) pp. 2329–2335

    Google Scholar 

  86. X. Chen, J. Ji, J. Jiang, G. Jin, F. Wang, J. Xie: Developing high-level cognitive functions for service robots, Proc. 9th Int. Conf. Auton. Agents Multiagent Syst., Toronto (2010) pp. 989–996

    Google Scholar 

  87. J.F. Lehman, J.E. Laird, P. Rosenbloom: A gentle introduction to Soar, an architecture for human cognition, Invit. Cogn. Sci. 4, 212–249 (1996)

    Google Scholar 

  88. N. Derbinsky, J.E. Laird: Extending soar with dissociated symbolic memories, Symp. Human Mem. Artif. Agents, AISB (2010) pp. 31–37, http://ai.eecs.umich.edu/soar/sitemaker/docs/pubs/aisb2010_rwwa_soar9_OnlinePDF.pdf

    Google Scholar 

  89. W.G. Kennedy, M. Rouleau, J.K. Bassett: Multiple levels of cognitive modeling within agent-based modeling, Proc. 18th Conf. Behav. Represent. Model. Simul., Sundance (2009) pp. 143–144

    Google Scholar 

  90. R.B. Rusu, Z.C. Marton, N. Blodow, M. Dolha, M. Beetz: Towards 3D point cloud based object maps for household environments, Robotics Auton. Syst. J. Semant. Knowl. Robotics 56(11), 927–941 (2008)

    Article  Google Scholar 

  91. S. Vasudevan, R. Siegwart: Bayesian space conceptualization and place classification for semantic maps in mobile robotics, Robotics Auton. Syst. 56(6), 522–537 (2008)

    Article  Google Scholar 

  92. H. Zender, O. Martinez Mozos, P. Jensfelt, G.J.M. Kruijff, W. Burgard: Conceptual spatial representations for indoor mobile robots, Robotics Auton. Syst. 56(6), 493–502 (2008)

    Article  Google Scholar 

  93. B. Limketkai, L. Liao, D. Fox: Relational object maps for mobile robots, Proc. Int. Jt. Conf. Artif. Intell. (IJCAI) (2005) pp. 1471–1476

    Google Scholar 

  94. M. Tenorth, L. Kunze, D. Jain, M. Beetz: KNOWROB-MAP – Knowledge-linked semantic object maps, 10th IEEE-RAS Int. Conf. Humanoid Robots, Nashville (2010) pp. 430–435

    Google Scholar 

  95. N. Mavridis, D. Roy: Grounded situation models for robots: Where words and percepts meet, Proc. 2006 IEEE/RSJ Int. Conf. Intell. Robots Syst., Beijing (2006) pp. 4690–4697

    Google Scholar 

  96. D.K. Misra, J. Sung, K. Lee, A. Saxena: Tell me Dave: Context-sensitive grounding of natural language to mobile manipulation instructions, Proc. Robotics Sci. Syst. (RSS) (2014)

    Google Scholar 

  97. T. Kollar, S. Tellex, D. Roy, N. Roy: Toward understanding natural language directions, Proc. 5th AMC/IEEE Int. Conf. Hum.-Robot Interact. (HRI), Osaka (2010) pp. 259–266

    Google Scholar 

  98. C. Matuszek, E. Herbst, L. Zettlemoyer, D. Fox: Learning to parse natural language commands to a robot control system, Proc. 13th Int. Symp. Exp. Robotics (ISER) Québec City (2012) pp. 403–415

    Google Scholar 

  99. F. Duvallet, T. Kollar, A. Stentz: Imitation learning for natural language direction following through unknown environments, 2013 IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 1047–1053

    Chapter  Google Scholar 

  100. K. Zhou, M. Zillich, H. Zender, M. Vincze: Web mining driven object locality knowledge acquisition for efficient robot behavior, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vilamoura (2012) pp. 3962–3969

    Google Scholar 

  101. M. Tenorth, D. Nyga, M. Beetz: Understanding and executing instructions for everyday manipulation tasks from the World Wide Web, IEEE Int. Conf. Robotics Autom. (ICRA), Anchorage (2010) pp. 1486–1491

    Google Scholar 

  102. M. Tenorth, U. Klank, D. Pangercic, M. Beetz: Web-enabled robots – Robots that use the web as an information resource, Robotics Autom. Mag. 18(2), 58–68 (2011)

    Article  Google Scholar 

  103. M. Waibel, M. Beetz, R. D’Andrea, R. Janssen, M. Tenorth, J. Civera, J. Elfring, D. Gálvez-López, K. Häussermann, J.M.M. Montiel, A. Perzylo, B. Schießle, O. Zweigle, R. van de Molengraft: RoboEarth – A world wide web for robots, Robotics Autom. Mag. 18(2), 69–82 (2011)

    Article  Google Scholar 

  104. S. Osentoski, B. Pitzer, C. Crick, G. Jay, S. Dong, D.H. Grollman, H.B. Suay, O.C. Jenkins: Remote robotic laboratories for learning from demonstration – Enabling user interaction and shared experimentation, Int. J. Soc. Robotics 4(4), 449–461 (2012)

    Article  Google Scholar 

  105. M.B. Blake, S.L. Remy, Y. Wei, A.M. Howard: Robots on the web, IEEE Robotics Autom. Mag. 18, 33–43 (2011)

    Article  Google Scholar 

  106. D. Hunziker, M. Gajamohan, M. Waibel, R. D’Andrea: Rapyuta: The RoboEarth cloud engine, IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 438–444

    Google Scholar 

  107. D. McDermott: Robot planning, AI Magazine 13(2), 55–79 (1992)

    Google Scholar 

  108. M.E. Pollack, J.F. Horty: There’s more to life than making plans: Plan management in dynamic, multiagent environments, AI Magazine 20(4), 71–83 (1999)

    Google Scholar 

  109. D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, D. Wilkins: PDDL – The Planning Domain Definition Language, Tech. Rep. CVC TR-98-003/DCS TR-1165 (Yale Center for Computational Vision and Control, New Haven 1998)

    Google Scholar 

  110. M. Fox, D. Long: PDDL2.1: An extension of PDDL for expressing temporal planning domains, J. Artif. Intell. Res. 20, 61–124 (2003)

    Article  MATH  Google Scholar 

  111. F. Gravot, S. Cambon, R. Alami: aSyMov: A planner that deals with intricate symbolic and geometric problems, Springer Tracts Adv. Robotics 15, 100–110 (2005)

    Article  Google Scholar 

  112. R. Alur, T. Henzinger, H. Wong-Toi: Symbolic analysis of hybrid systems, Proc. 37th IEEE Conf. Decis. Control, Tampa (1997) pp. 702–707

    Google Scholar 

  113. R. Alur, T. Henzinger, P. Ho: Automatic symbolic verification of embedded systems, IEEE Trans. Softw. Eng. 22, 181–201 (1996)

    Article  Google Scholar 

  114. M. Beetz, H. Grosskreutz: Probabilistic hybrid action models for predicting concurrent percept-driven robot behavior, J. Artif. Intell. Res. 24, 799–849 (2005)

    Article  MATH  Google Scholar 

  115. K. Passino, P. Antsaklis: A system and control-theoretic perspective on artificial intelligence planning systems, Appl. Artif. Intell. 3, 1–32 (1989)

    Article  Google Scholar 

  116. T. Dean, M. Wellmann: Planning and Control (Morgan Kaufmann Publishers, San Mateo 1991)

    Book  Google Scholar 

  117. R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand: An architecture for autonomy, Int. J. Robotics Res. 17(4), 315–337 (1998)

    Article  Google Scholar 

  118. R.P. Bonasso, R.J. Firby, E. Gat, D. Kortenkamp, D.P. Miller, M.G. Slack: Experiences with an architecture for intelligent, reactive agents, J. Exp. Theor. Artif. Intell. 9(2/3), 237–256 (1997)

    Article  Google Scholar 

  119. D. Andre, S. Russell: Programmable reinforcement learning agents, Proc. 13th Conf. Neural Inf. Process. Syst. (2001) pp. 1019–1025

    Google Scholar 

  120. D. Andre, S.J. Russell: State abstraction for programmable reinforcement learning agents, 18th Natl. Conf. Artif. Intell., Edmonton (2002) pp. 119–125

    Google Scholar 

  121. R.S. Sutton, D. Precup, S.P. Singh: Between MDPs and Semi-MDPs: A framework for temporal abstraction in reinforcement learning, Artif. Intell. 112(1/2), 181–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  122. D. Precup: Temporal Abstraction in Reinforcement Learning, Ph.D. Thesis (University of Massachusetts, Amherst 2000)

    Google Scholar 

  123. M. Beetz: Structured reactive controllers, J. Auton. Agents Multi-Agent Syst. 4(1/2), 25–55 (2001)

    Article  Google Scholar 

  124. D. McDermott: A Reactive Plan Language (Yale University, New Haven 1991)

    Google Scholar 

  125. M. Ingham, R. Ragno, B. Williams: A reactive model-based programming language for robotic space explorers, Proc. 6th Int. Symp. Artif. Intell. Robotics Autom. Space (ISAIRAS) (2001)

    Google Scholar 

  126. M. Bratman: Intention, Plans, and Practical Reason (Harvard Univ. Press, Cambridge 1987)

    Google Scholar 

  127. M. Bratman, D. Israel, M. Pollack: Plan and resource-bounded practical reasoning, Comput. Intell. 4, 349–355 (1988)

    Article  Google Scholar 

  128. M. Georgeff, F. Ingrand: Decision making in an embedded reasing system, Proc. 11th Int. Jt. Conf. Artif. Intell. (1989) pp. 972–978

    Google Scholar 

  129. M. Beetz, D. Jain, L. Mosenlechner, M. Tenorth, L. Kunze, N. Blodow, D. Pangercic: Cognition-enabled autonomous robot control for the realization of home chore task intelligence, Proceedings IEEE 100(8), 2454–2471 (2012)

    Article  Google Scholar 

  130. D.S. Weld: An introduction to least commitment planning, AI Magazine 15(4), 27–61 (1994)

    Google Scholar 

  131. D.S. Weld: Recent advances in AI planning, AI Magazine 20(2), 93–123 (1999)

    Google Scholar 

  132. D.V. McDermott: The 1998 AI planning systems competition, AI Magazine 21(2), 35–55 (2000)

    Google Scholar 

  133. J. Hoffmann, B. Nebel: The FF planning system: Fast plan generation through heuristic search, J. Artif. Intell. Res. 14, 253–302 (2001)

    Article  MATH  Google Scholar 

  134. A.L. Blum, M.L. Furst: Fast planning through plan graph analysis, J. Artif. Intell. 90, 281–300 (1997)

    Article  MATH  Google Scholar 

  135. F. Bacchus, F. Kabanza: Planning for temporally extended goals, Ann. Math. Artif. Intell. 22(1/2), 5–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  136. D. Nau, O. Ilghami, U. Kuter, J.W. Murdock, D. Wu, F. Yaman: SHOP2: An HTN planning system, J. Artif. Intell. Res. 20, 379–404 (2003)

    Article  MATH  Google Scholar 

  137. D. McDermott: Transformational planning of reactive behavior, Tech. Rep. (Yale University, New Haven 1992)

    Google Scholar 

  138. P. H. Winston: Learning Structural Descriptions from Examples, AI Tech. Rep. 231 (MIT, Cambridge 1970)

    Google Scholar 

  139. K.J. Hammond: Case-Based Planning: Viewing Planning as a Memory Task (Academic Press, Waltham 1989)

    Book  MATH  Google Scholar 

  140. R.G. Simmons: A theory of debugging plans and interpretations, Proc. 7th Natl. Conf. Artif. Intell. (1988) pp. 94–99

    Google Scholar 

  141. M. Beetz: Concurrent Reactive Plans: Anticipating and Forestalling Execution Failures, Lecture Notes in Artificial Intelligence, Vol. 1772 (Springer, Berlin, Heidelberg, 2000)

    Book  MATH  Google Scholar 

  142. H. Grosskreutz: Probabilistic projection and belief update in the pGOLOG framework. In: Informatik 2000, Informatik Aktuell, ed. by K. Mehlhorn, G. Snelting (Springer, Berlin, Heidelberg 2000) pp. 233–249

    Chapter  Google Scholar 

  143. L. Morgenstern: Mid-sized axiomatizations of commonsense problems: A case study in egg cracking, Studia Log. 67(3), 333–384 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  144. N. Blodow, D. Jain, Z.-C. Marton, M. Beetz: Perception and probabilistic anchoring for dynamic world state logging, Proc. 10th IEEE-RAS Int. Conf. Humanoid Robots (Humanoids) (2010) pp. 160–166

    Google Scholar 

  145. N.J. Nilsson: Shakey the Robot, Tech. Note , Vol. TN 323 (SRI International, Stanford 1984) http://www.ai.sri.com/shakey/

  146. B. Raphael: The Thinking Computer: Mind Inside Matter (W.H. Freeman, San Francisco 1976)

    MATH  Google Scholar 

  147. Journal of Artificial Intelligence Research: http://www.jair.org/

  148. European Conference on Artificial Intelligence: http://www.eccai.org/ecai.shtml

  149. AAAI Conference on Artificial Intelligence: http://www.aaai.org/Conferences/AAAI/aaai.php

  150. International Conference on Automated Planning and Scheduling: http://www.icaps-conference.org/

  151. F. Ingrand, M. Ghallab: Robotics and artificial intelligence: A perspective on deliberation functions, AI Communications 27(1), 63–80 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Beetz .

Editor information

Editors and Affiliations

Video-References

Video-References

:

SHAKEY: Experimentation in robot learning and planning (1969) available from http://handbookofrobotics.org/view-chapter/14/videodetails/704

:

From knowledge grounding to dialogue processing available from http://handbookofrobotics.org/view-chapter/14/videodetails/705

:

RoboEarth final demonstrator available from http://handbookofrobotics.org/view-chapter/14/videodetails/706

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beetz, M., Chatila, R., Hertzberg, J., Pecora, F. (2016). AI Reasoning Methods for Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics