Skip to main content

Limbed Systems

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations, we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

ASV:

adaptive suspension vehicle

CAN:

controller area network

CB:

computional brain

CMP:

centroid moment pivot

COM:

center of mass

DLR:

German Aerospace Center

DOF:

degree of freedom

FRP:

fiber-reinforced plastics

GSN:

gait sensitivity norm

HRP:

humanoid robotics project

IMU:

inertial measurement unit

LIP:

linear inverted pendulum

NiMH:

nickel metal hydride battery

PANTOMEC:

pantograph mechanism driven

PD:

proportional–derivative

PID:

proportional–integral–derivative

SEA:

series elastic actuator

SLIP:

spring loaded inverted pendulum

STriDER:

self-excited tripodal dynamic experimental robot

TUM:

Technical University of Munich

ZMP:

zero moment point

References

  1. M.H. Raibert: Legged Robots That Balance (MIT Press, Cambridge 1986)

    MATH  Google Scholar 

  2. S.-M. Song, K.J. Waldron: Machines That Walk: The Adaptive Suspension Vehicle (MIT Press, Cambridge 1989)

    Google Scholar 

  3. S. Lohmeier: Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion (Technische Universität München, München 2010)

    Google Scholar 

  4. R.D. Quinn, R.E. Ritzmann: Construction of a hexapod robot with cockroach kinematics benefits both robotics and biology, Connect. Sci. 10(3), 239–254 (1998)

    Google Scholar 

  5. H. Hirukawa, F. Kanehiro, K. Kaneko, S. Kajita, M. Morisawa: Dinosaur robotics for entertainment applications, IEEE Robotics Autom. Mag. 14(3), 43–51 (2007)

    Google Scholar 

  6. D.E. Koditschek, R.J. Full, M. Buehler: Mechanical aspects of legged locomotion control, Arthropod Struct. Dev. 33, 251–272 (2004)

    Google Scholar 

  7. R. Tajima, K. Suga: Motion having a flight phase: Experiments involving a one-legged robot, Proc. Int. Conf. Intell. Robots Syst. (IROS), Beijing (2006) pp. 1727–1731

    Google Scholar 

  8. K. Kaneko, S. Kajita, F. Kanehiro, K. Yokoi, K. Fujiwara, H. Hirukawa, T. Kawasaki, M. Hirata, T. Isozumi: Design of advanced leg module for humanoid robotics project of METI, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 38–45

    Google Scholar 

  9. Y. Suhagara, H. Lim, T. Hosobata, Y. Mikuriya, H. Sunazuka, A. Takanishi: Realization of dynamic human-carrying walking by a biped locomotor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 3055–3060

    Google Scholar 

  10. S. Hirose, T. Masui, H. Kikuchi, Y. Fukuda, Y. Umetani: TITAN III: A quadruped walking vehicle – Its structure and basic characteristics, Proc. Int. Symp. Robotics Res., Kyoto (1984) pp. 325–331

    Google Scholar 

  11. M. Buehler, R. Playter, M. Raibert: Robots step outside, Proc. Int. Symp. Adapt. Motion Anim. Mach. (AMAM), Ilmenau (2005)

    Google Scholar 

  12. K.J. Waldron, R.B. McGhee: The adaptive suspension vehicle, IEEE Control Syst. Mag. 6, 7–12 (1986)

    Google Scholar 

  13. R.A. Brooks: A robot that walks; Emergent behavior from a carefully evolved network, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Scottsdale (1989) pp. 292–296

    Google Scholar 

  14. M. Hirose, Y. Haikawa, T. Takenaka, K. Hirai: Development of humanoid robot ASIMO, Proc. Int. Conf. Intell. Robots Syst. (IROS) – Workshop 2 (2001)

    Google Scholar 

  15. K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, S. Kajita: Cybernetic Human HRP-4C, IEEE-RAS Int. Conf. Humanoid Robots, Paris (2009) pp. 7–14

    Google Scholar 

  16. K. Kaneko, F. Kanehiro, M. Morisawa, T. Tsuji, K. Mira, S. Nakaoka, S. Kajita, K. Yokoi: Hardware improvement of cybernetic human HRP-4C towards entertainent use, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), San Fransisco (2011) pp. 4392–4399

    Google Scholar 

  17. K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, T. Isozumi: Humanoid Robot HRP-2, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 1083–1090

    Google Scholar 

  18. K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, K. Akachi: Humanoid Robot HRP-3, Proc. Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 2471–2478

    Google Scholar 

  19. M. Kouchi, M. Mochimaru, H. Iwasawa, S. Mitani: Anthropometric database for Japanese population 1997-98, Japanese Industrial Standards Center, AIST, MITI http://riodb.ibase.aist.go.jp/dhbodydb/ (Tokyo 2000)

  20. K. Kaneko, K. Harada, F. Kanehiro: Development of multi-fingered hand for life-size humanoid robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 913–920

    Google Scholar 

  21. Q. Lu, C. Ortega, O. Ma: Passive gravity compensation mechanisms: Technologies and applications, Recent Pat. Eng. 5(1), 32–44 (2011)

    Google Scholar 

  22. K.A. Wyrobek, E.H. Berger, H.F.M. Van der Loos, J.K. Salisbury: Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008)

    Google Scholar 

  23. Willow Garage Inc., 68 Willow Road, Menlo Park, CA 94025, USA: http://www.willowgarage.com/pages/pr2/

  24. T. McGeer: Passive dynamic walking, Int. J. Robotics Res. 9(2), 62–82 (1990)

    Google Scholar 

  25. M. Garcia, A. Chatterjee, A. Ruina, M. Coleman: The simplest walking model: Stability, complexity, and scaling, ASME J. Biomech. Eng. 120, 281–288 (1998)

    Google Scholar 

  26. A. Goswami, B. Thuilot, B. Espiau: A study of the passive gait of a compass-like biped robot: Symmetry and chaos, Int. J. Robotics Res. 17, 1282–1301 (1998)

    Google Scholar 

  27. S.H. Collins, M. Wisse, A. Ruina: A three-dimensional passive-dynamic walking robot with two legs and knees, Int. J. Robotics Res. 20(2), 607–615 (2001)

    Google Scholar 

  28. S.H. Collins, A. Ruina, R. Tedrake, M. Wisse: Efficient bipedal robots based on passive dynamic walkers, Sci. Mag. 307, 1082–1085 (2005)

    Google Scholar 

  29. P.A. Bhounsule, J. Cortell, A. Ruina: Design and control of Ranger: an energy-efficient, dynamic walking robot, 15th Int. Conf. Climb. Walk. Robots (CLAWAR), Baltimore (2012) pp. 441–448

    Google Scholar 

  30. S.H. Collins, M. Wisse, A. Ruina: Three-dimensional passive-dynamic walking robot with two legs and knees, Int. J. Robotics Res. 20(2), 607–615 (2001)

    Google Scholar 

  31. M. Wisse, L. Schwab, F.L.T. Van der Helm: Passive walking dynamic model with upper body, Robotica 22(6), 681–688 (2004)

    Google Scholar 

  32. E.R. Westervelt, J.W. Grizzle, D.E. Koditschek: Hybrid zero dynamics of planar biped walkers, IEEE Trans. Autom. Control 48(1), 42–56 (2003)

    MathSciNet  MATH  Google Scholar 

  33. E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi, B. Morris: Feedback Control of Dynamic Bipedal Robot Locomotion (CRC, Boca Raton 2007)

    Google Scholar 

  34. C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt, C. Canudas-de-Wit, J.W. Grizzle: RABBIT: A testbed for advanced control theory, IEEE Control Syst. Mag. 23(5), 57–79 (2003)

    Google Scholar 

  35. J.W. Grizzle, J. Hurst, B. Morris, H.W. Park, K. Sreenath: MABEL, A new robotic bipedal walker and runner, Proc. IEEE Am. Control Conf. (2009)

    Google Scholar 

  36. D. Hobbelen, T. de Boer, M. Wisse: System overview of bipedal robots Flame and TUlip: Tailor-made for Limit Cycle Walking, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nice (2008) pp. 2486–2491

    Google Scholar 

  37. R.J. Full, D.E. Koditschek: Templates and anchors: neuromechanical hypotheses of legged locomotion on land, J. Exp. Biol. 202, 3325–3332 (1999)

    Google Scholar 

  38. S. Kajita, K. Tani: Study of dynamic biped locomotion on rugged terrain – Derivation and application of the linear inverted pendulum mode, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1991) pp. 1405–1411

    Google Scholar 

  39. M.B. Popovic, A. Goswami, H. Herr: Angular momentum regulation during human walking: Biomechanics and control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 2405–2411

    Google Scholar 

  40. M.B. Popovic, A. Goswami, H. Herr: Ground reference points in legged locomotion: Definitions, biological trajectories and control implications, Int. J. Robotics Res. 24(12), 1013–1032 (2005)

    Google Scholar 

  41. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa: Biped walking pattern generation by using preview control of zero-moment point, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 1620–1626

    Google Scholar 

  42. Y. Choi, D. Kim, Y. Oh, B.J. You: Posture/walking control for humanoid robot based on kinematic resolution of com Jacobian with embedded motion, IEEE Trans. Robotics 23(6), 1285–1293 (2007)

    Google Scholar 

  43. J. Englsberger, C. Ott, M. Roa, A. Albu-Schaeffer, G. Hirzinger: Bipedal walking control based on capture point dynamics, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 4420–4427

    Google Scholar 

  44. S. Lohmeier, T. Bushmann, H. Ulbrich: Humanoid Robot LOLA, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Kobe (2009) pp. 775–780

    Google Scholar 

  45. I.W. Park, J.-Y. Kim, J. Lee, J.H. Oh: Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3: HUBO), Proc. IEEE-RAS Int. Conf. Humanoid Robots (2005) pp. 321–326

    Google Scholar 

  46. B. Stephens: Humanoid push recovery, Proc. IEEE-RAS Int. Conf. Humanoid Robots (2007)

    Google Scholar 

  47. T. Takenaka, T. Matsumoto, T. Yoshiike: Real time motion generation and control for biped robot – 1st Report: Walking gait pattern generation, Proc. IEEE /RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 1084–1091

    Google Scholar 

  48. R. Blickhan: The spring mass model for running and hopping, J. Biomech. 22(11-12), 1217–1227 (1989)

    Google Scholar 

  49. H. Geyer, A. Seyfarth, R. Blickhan: Compliant leg behaviour explains basic dynamics of walking and running, Proc. Biol. Sci. 273(1603), 2861–2867 (2006)

    Google Scholar 

  50. J. Pratt, G. Pratt: Exploiting natural dynamics in the control of a planar bipedal walking robot, Proc. 36th Ann. Allerton Conf. Commun. (1998)

    Google Scholar 

  51. J. Pratt, B. Krupp: Design of a bipedal walking robot, SPIE Def. Sec. Symp., Bellingham (2008)

    Google Scholar 

  52. G. Hirzinger, N. Sporer, A. Albu-Schaeffer, M. Haehnle, R. Krenn, A. Pascucci, M. Schedl: DLR's torque-controlled light weight robot III – are we reaching the technological limits now?, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2002) pp. 1710–1716

    Google Scholar 

  53. C. Ott, O. Eiberger, W. Friedl, B. Baeuml, U. Hillenbrand, C. Borst, A. Albu-Schaeffer, B. Brunner, H. Hirschmueller, S. Kielhoefer, R. Konietschke, M. Suppa, T. Wimboeck, F. Zacharias, G. Hirzinger: A humanoid two-arm system for dexterous manipulation, Proc. IEEE-RAS Int. Conf. Humanoid Robots, Genova (2006) pp. 276–283

    Google Scholar 

  54. C. Ott, C. Baumgaertner, J. Mayr, M. Fuchs, R. Burger, D. Lee, O. Eiberger, A. Albu-Schaeffer, M. Grebenstein, G. Hirzinger: Development of a biped robot with torque controlled joints, Proc. IEEE-RAS Int. Conf. Humanoid Robots (2010) pp. 167–173

    Google Scholar 

  55. G.A. Pratt, M.M. Williamson: Series elastic actuators, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1995) pp. 399–406

    Google Scholar 

  56. R. Brooks, C. Breazeal, M. Marjanovic, B. Scassellati, M. Williamson: The Cog project: Building a humanoid robot, Lect. Notes Comput. Sci. 1562, 52–87 (1999)

    Google Scholar 

  57. H. Iwata, S. Sugano: Development of human symbiotic robot: WENDY, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999)

    Google Scholar 

  58. M.W. Spong: Modeling and control of elastic joint robots, Trans. ASME: J. Dyn. Syst. Meas. Control 109, 310–318 (1987)

    MATH  Google Scholar 

  59. G. Wyeth: Control issues for velocity sourced series elastic actuators, Proc. Australasian Conf. Robotics Autom. (2006)

    Google Scholar 

  60. H. Vallery, R. Ekkelenkamp, H. van der Kooij, M. Buss: Passive and accurate torque control of series elastic actuators, IEEE/RSJ Proc. Int. Conf. Intell. Robots Syst. (IROS) (2007)

    Google Scholar 

  61. C. Ott, A. Albu-Schaeffer, G. Hirzinger: Decoupling based cartesian impedance control of flexible joint robots, IEEE Int. Conf. Robotics Autom. (ICRA) (2003)

    Google Scholar 

  62. C. Ott, A. Albu-Schaeffer, A. Kugi, G. Hirzinger: On the passivity based impedance control of flexible joint robots, IEEE Trans. Robotics 24(2), 416–429 (2008)

    Google Scholar 

  63. J. Heaston, D. Hong, I. Morazzani, P. Ren, G. Goldman: STriDER: Self-excited tripedal dynamic experimental robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Roma (2007) pp. 2776–2777

    Google Scholar 

  64. A. Rachmat, A. Besari, R. Zamri, A. Satria Prabuwono, S. Kuswadi: The study on optimal gait for five-legged robot with reinforcement learning, Int. Conf. Intell. Robots Appl. (2009) pp. 1170–1175

    Google Scholar 

  65. O. Matsumoto, S. Kajita, M. Saigo, K. Tani: Dynamic trajectory control of passing over stairs by a biped type leg-wheeled robot with nominal reference of static gait, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1998) pp. 406–412

    Google Scholar 

  66. S. Hirose, H. Takeuchi: Study on roller-walk (basic characteristics and its control), Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 3265–3270

    Google Scholar 

  67. U. Saranli, M. Buehler, D.E. Koditschek: RHex: A Simple and Highly Mobile Hexapod Robot, Int. J. Robotics Res. 20(7), 616–631 (2001)

    Google Scholar 

  68. T.J. Allen, R.D. Quinn, R.J. Bachmann, R.E. Ritzmann: Abstracted biological principles applied with reduced actuation improve mobility of legged vehicles, Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS), Las Vegas (2003) pp. 1370–1375

    Google Scholar 

  69. G. Endo, S. Hirose: Study on roller-walker: System integration and basic experiments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Detroit (1999) pp. 2032–2037

    Google Scholar 

  70. N. Neville, M. Buehler, I. Sharf: A bipedal running robot with one actuator per leg, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006) pp. 848–853

    Google Scholar 

  71. J. Bares, D. Wettergreen: Dante II: Technical description, results and lessons learned, Int. J. Robotics Res. 18(7), 621–649 (1999)

    Google Scholar 

  72. N. Koyachi, H. Adachi, M. Izumi, T. Hirose, N. Senjo, R. Murata, T. Arai: Multimodal control of hexapod mobile manipulator MELMANTIS-1, Proc. 5th Int. Conf. Climb. Walk. Robots (2002) pp. 471–478

    Google Scholar 

  73. Y. Ota, T. Tamaki, K. Yoneda, S. Hirose: Development of walking manipulator with versatile locomotion, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 477–483

    Google Scholar 

  74. S. Hirose, K. Yoneda, H. Tsukagoshi: TITAN VII: Quadruped walking and manipulating robot on a steep slope, IEEE Int. Conf. Robotics Autom. (ICRA), Albuquerque (1997) pp. 494–500

    Google Scholar 

  75. S. Hirose, A. Nagakubo, R. Toyama: Machine that can walk and climb on floors, walls and ceilings, Proc. 5th Int. Conf. Adv. Robotics (ICAR), Pisa (1991) pp. 753–758

    Google Scholar 

  76. T. Yano, S. Numao, Y. Kitamura: Development of a self-contained wall climbing robot with scanning type suction cups, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 1 (1998) pp. 249–254

    Google Scholar 

  77. S. Kim, A. Asbeck, W. Provancher, M.R. Cutkosky: SpinybotII: Climbing hard walls with compliant microspines, Proc. Int. Conf. Adv. Robotics (ICAR), Seattle (2005) pp. 18–20

    Google Scholar 

  78. A.T. Asbeck, S. Kim, A. McClung, A. Parness, M.R. Cutkosky: Climbing walls with microspines (Video), Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006)

    Google Scholar 

  79. R.B. McGhee, A.A. Frank: On the stability properties of quadruped creeping gaits, Math. Biosci. 3, 331–351 (1968)

    MATH  Google Scholar 

  80. R.B. McGhee: Vehicular legged locomotion. In: Advances in Automation and Robotics, ed. by G.N. Saridis (JAI, Greenwich 1985) pp. 259–284

    Google Scholar 

  81. M. Vukobratović, J. Stepanenko: On the stability of anthropomorphic systems, Math. Biosci. 15, 1–37 (1972)

    MATH  Google Scholar 

  82. Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, K. Tanie: Planning walking patterns for a biped robot, IEEE Trans. Robotics Autom. 17(3), 280–289 (2001)

    Google Scholar 

  83. D.A. Messuri, C.A. Klein: Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion, IEEE J. Robotics Autom. RA-1(3), 132–141 (1985)

    Google Scholar 

  84. E. Garcia, P. de Gonzalez Santos: An improved energy stability margin for walking machines subject to dynamic effects, Robotica 23(1), 13–20 (2005)

    Google Scholar 

  85. D.G.E. Hobbelen, M. Wisse: A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm, IEEE Trans. Robotics 23(6), 1213–1224 (2007)

    Google Scholar 

  86. P. Gregorio, M. Ahmadi, M. Buehler: Design, control, and energetics of an electrically actuated legged robot, IEEE Trans. Syst. Man Cybern. B27(4), 626–634 (1997)

    Google Scholar 

  87. R. McNeill Alexander: The gait of bipedal and quadrupedal animals, Int. J. Robotics Res. 3(2), 49–59 (1984)

    Google Scholar 

  88. R. McNeill Alexander: Exploring Biomechanics – Animals in Motion (Freeman, Boston 1992)

    Google Scholar 

  89. G. Gabrielli, T. von Karman: What price speed – Specific power required for propulsion of vehicles, Mechan. Eng. 72(10), 775–781 (1950)

    Google Scholar 

  90. Y. Umetani, S. Hirose: Biomechanical study on serpentine locomotion – Mechanical analysis and zoological experiment for the stationary straightforward movement, Trans. Soc. Instrum. Control Eng. 6, 724–731 (1973), in Japanese

    Google Scholar 

  91. S. Collins, A. Ruina, R. Tedrake, M. Wisse: Efficient Bipedal Robots Based on Passive-Dynamic Walkers, Science 307, 1082–1085 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuuji Kajita .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Linear inverted pendulum mode available from http://handbookofrobotics.org/view-chapter/17/videodetails/512

:

Hexapod robot Ambler available from http://handbookofrobotics.org/view-chapter/17/videodetails/517

:

Hexapod ParaWalker-II available from http://handbookofrobotics.org/view-chapter/17/videodetails/520

:

Cockroach-like hexapod available from http://handbookofrobotics.org/view-chapter/17/videodetails/521

:

Bipedal humanoid robot: WABIAN available from http://handbookofrobotics.org/view-chapter/17/videodetails/522

:

Cybernetic human HRP-4C walking available from http://handbookofrobotics.org/view-chapter/17/videodetails/524

:

Cybernetic human HRP-4C quick turn available from http://handbookofrobotics.org/view-chapter/17/videodetails/525

:

Development of a humanoid robot DARwIn available from http://handbookofrobotics.org/view-chapter/17/videodetails/526

:

Passive dynamic walking with knees available from http://handbookofrobotics.org/view-chapter/17/videodetails/527

:

Intuitive control of a planar bipedal walking robot available from http://handbookofrobotics.org/view-chapter/17/videodetails/529

:

IHMC/Yobotics biped available from http://handbookofrobotics.org/view-chapter/17/videodetails/530

:

Torque controlled humanoid robot TORO available from http://handbookofrobotics.org/view-chapter/17/videodetails/531

:

3-D passive dynamic walking robot available from http://handbookofrobotics.org/view-chapter/17/videodetails/532

:

Biped running robot MABEL available from http://handbookofrobotics.org/view-chapter/17/videodetails/533

:

STriDER: Self-excited tripedal dynamic experimental robot available from http://handbookofrobotics.org/view-chapter/17/videodetails/534

:

Roller-Walker: Leg-wheel hybrid vehicle available from http://handbookofrobotics.org/view-chapter/17/videodetails/535

:

RHex rough-terrain robot available from http://handbookofrobotics.org/view-chapter/17/videodetails/536

:

Whegs II: A mobile robot using abstracted biological principles available from http://handbookofrobotics.org/view-chapter/17/videodetails/537

:

StickybotIII climbing robot available from http://handbookofrobotics.org/view-chapter/17/videodetails/540

:

Waalbot: agile climbing with synthetic fibrillar dry adhesives available from http://handbookofrobotics.org/view-chapter/17/videodetails/541

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kajita, S., Ott, C. (2016). Limbed Systems. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics