Abstract
Unmanned aircraft systems (GlossaryTerm
UAS
s) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 2-D:
-
two-dimensional
- 2.5-D:
-
two-and-a-half-dimensional
- 3-D:
-
three-dimensional
- 6-D:
-
six-dimensional
- AC:
-
aerodynamic center
- AIAA:
-
American Institute of Aeronautics and Astronautics
- AOA:
-
angle of attack
- BEMT:
-
blade element momentum theory
- BET:
-
blade element theory
- CFD:
-
computational fluid dynamics
- COG:
-
center of gravity
- DC:
-
direct current
- DOF:
-
degree of freedom
- EKF:
-
extended Kalman filter
- FCU:
-
flight control-unit
- Fl-UAS:
-
flapping wing unmanned aerial system
- FW:
-
fixed-wing
- GIS:
-
geographic information system
- GPS:
-
global positioning system
- ISA:
-
international standard atmosphere
- LEV:
-
leading edge vortex
- LiPo:
-
lithium polymer
- LQR:
-
linear quadratic regulator
- LtA-UAS:
-
lighter-than-air system
- LtA:
-
lighter-than-air
- MIMO:
-
multiple-input–multiple-output
- MPC:
-
model predictive control
- MT:
-
momentum theory
- NASA:
-
National Aeronautics and Space Agency
- NDI:
-
nonlinear dynamic inversion
- NOAA:
-
National Oceanic and Atmospheric Administration
- PL:
-
power loading
- RSTA:
-
reconnaissance, surveillance, and target acquisition
- RW:
-
rotary-wing
- SAS:
-
stability augmentation system
- SISO:
-
single input single-output
- SLAM:
-
simultaneous localization and mapping
- SM:
-
static margin
- SOS:
-
save our souls
- TECS:
-
total energy control system
- UAS:
-
unmanned aircraft system
- UAV:
-
unmanned aerial vehicle
- UWB:
-
ultrawide band
- VTOL:
-
vertical take-off and landing
References
S. Leutenegger, M. Chli, R.Y. Siegwart: Brisk: Binary robust invariant scalable keypoints, Proc. IEEE Int. Conf. Comput. Vis. (ICCV) (2011) pp. 2548–2555
D. Scaramuzza, M.C. Achtelik, L. Doitsidis, F. Fraundorfer, E.B. Kosmatopoulos, A. Martinelli, M.W. Achtelik, M. Chli, S.A. Chatzichristofis, L. Kneip, G.H. Lee, S. Lynen, L. Meier, M. Pollefeys, A. Renzaglia, R. Siegwart, J.C. Stumpf, P. Tanskanen, C. Troiani, S. Weiss: Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments, IEEE Robotics Autom. Mag. 2014(9), 1–10 (2014)
K. Alexis, G. Nikolakopoulos, A. Tzes: Model predictive quadrotor control: Attitude, altitude and position experimental studies, IET Control Theory Appl. 6(12), 1812–1827 (2012)
M.W. Achtelik, S. Lynen, S. Weiss, M. Chli, R. Siegwart: Motion and uncertainty aware path planning for micro aerial vehicles, J. Field Robotics 31(4), 676–698 (2014)
K. Nonami: Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles (Springer, Berlin, Heidelberg 2010)
H. Tennekes: The Simple Science of Flight: From Insects to Jumbo Jets (MIT, Cambridge 2009)
W.J. Pisano, D.A. Lawrence: Control limitations of small unmanned aerial vehicles in turbulent environments, Proc. AIAA Guid. Navig. Control Conf. (2009)
B. Mettler, C. Dever, E. Feron: Scaling effects and dynamic characteristics of miniature rotorcraft, J. Guid. Control Dyn. 27(3), 466–478 (2004)
ICAO: Manual of the ICAO Standard Atmosphere: Extended to 80 Kilometres (262 500 feet) (Int. Civil Aviation Organization (ICAO), Montréal 1993)
M. Hepparle: JavaFoil - Analysis of java airfoils, http://www.mh-aerotools.de/airfoils/javafoil.htm (2007)
M. Drela: XFOIL - Subsonic airfoil development system, http://www.web.mit.edu/drela/Public/web/xfoil (2000)
Techwinder: xlfr5, http://www.xflr5.com (2000)
B.W. McCormick: Aerodynamics, Aeronautics, and Flight Mechanics (Wiley, New York 1979)
G.J. Leishman: Principles of Helicopter Aerodynamics (Cambridge Univ. Press, Cambridge 2006)
G.D. Padfield: Helicopter Flight Dynamics (Blackwell, New York 2007)
L. Zaccarian: Dc Motors: Dynamic Model and Control Techniques (Lecture Notes Univ. Rome, Rome 2012)
M. Drela: AVL (Software for aerodynamic and flight-dynamic analysis), http://web.mit.edu/drela/Public/web/avl (2004)
B. Etkin: Dynamics of Atmospheric Flight (Wiley, New York 1972)
G.J.J. Ducard: Fault-Tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles, Advanced in Industrial Control (Springer, Berlin, Heidelberg 2009)
M.C.Y. Niu: Airframe Structural Design (Conmilit, Hong Kong 1988)
R. Randolph: R/C Airplane Building Techniques, R/C Encyclopedia (Air Age, Wilton 1991)
D.P. Raymer: Aircraft Design: A Conceptual Approach (AIAA, Washington 1989)
A. Noth: Design of Solar Powered Airplanes for Continuous Flight, Ph.D. Thesis (Ecole Polytechnique Fedenale de Lausanne, Lausanne 2008)
R.W. Beard, T.W. McLain: Small Unmanned Aircraft: Theory and Practice (Princeton Univ. Press, Princeton 2012)
A.A. Lambregts: Vertical flight path and speed control autopilot design using total energy principles, AIAA Paper (AIAA, Washington 1983)
S. Park, J. Deyst, J.P. How: A new nonlinear guidance logic for trajectory tracking, Proc. AIAA Guid. Navig. Control Conf. (2004) pp. 16–19
S. Bouabdallah, C. Bermes, S. Grzonka, C. Gimkiewicz, A. Brenzikofer, R. Hahn, D. Schafroth, G. Grisett, W. Burgard, R. Siegwart: Towards palm–size autonomous helicopters, Proc. Int. Conf. Exhib. Unmanned Aer. Veh. (2010)
P.I.E. Pounds, D.R. Bersak, A.M. Dollar: Grasping from the air: Hovering capture and load stability, Proc. IEEE Conf. Robotics Autom. (ICRA) (2011)
D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, D. Rus: Energy-efficient autonomous four-rotor flying robot controlled at 1 khz, Proc. IEEE Int. Conf. Robotics Auton. Syst. (2007)
G.M. Hoffmann, H. Huang, S.L. Waslander, C.J. Tomlin: Quadrotor helicopter flight dynamics and control: Theory and experiment, Proc. AIAA Guid. Navig. Control Conf. (2007)
A. Ko, O.J. Ohnaian, P. Gelhausen: Ducted fan uav modeling and simulation in preliminary design, Proc. AIAA Model. Simul. Technol. Conf. Exhibit. (2007)
R. Naldi, F. Forte, L. Marconi: A class of modular aerial robots, Proc. 50th IEEE Conf. Decis. Control Eur. Control Conf. (2011)
E.R. Ulrich, J.S. Humbert, D.J. Pines: Pitch and heave control of robotic samara micro air vehicles, J. Aircr. 47, 1290–1299 (2010)
C.Y. Yun, I. Park, H.Y. Lee, J.S. Jung, I.S. Hwang, S.J. Kim: A new vtol uav cyclocopter with cycloidal blades system, Proc. 60th AHS Annu. Forum Amer. Helicopter Soc. (2004)
R.W. Prouty: Helicopter Performance, Stability and Control (Krieger, New York 2005)
M.B. Tischler, R.K. Remple: Aircraft and Rotorcraft System Identification: Engineering Methods with Flight-Test Examples (AIAA, Washington 2006)
B. Mettler: Identification, Modeling and Characteristics of Miniature Rotorcraft (Kluwer, Boston 2002)
A.R.S. Bramwell, G. Done, D. Balmford: Bramwell's Helicopter Dynamics (Butterworth-Heinemann, London 2001)
R.T.N. Chen: Effects of primary rotor parameters on flapping dynamics, Tech. Rep. (National Aeronautics and Space Administration, Washington 1980)
R.T.N. Chen: A survey of nonuniform inflow models of rotorcraft flight dynamics and control applications, Tech. Rep. (National Aeronautics and Space Administration, Washington 1989)
R. Cunha: Advanced Motion Control for Autonomous Air Vehicles, Ph.D. Thesis (Instituto Superior Tecnico, Universidade Tecnica de Lisbon, Lisbon 2007)
T.N. Pornsin-Sirirak, S.W. Lee, H. Nassef, J. Grasmeyer, Y.C. Tai, C.M. Ho, M. Keennon: MEMs wing technology for a battery powered ornithopter, Proc. 13th IEEE Annu. Int. Conf. MEMS (2000) pp. 799–804
T.N. Pornsin-Sirirak, Y.C. Tai, C.M. Ho, M. Keennon: Microbat: A palm-sized electrically powered ornithopter, Proc. NASA/SPL Workshop Biomorphic Robotics (2001) pp. 14–17
S.P. Sane: The aerodynamics of insect flight, J. Exp. Biol. 206(23), 4191–4208 (2003)
M.H. Dickinson, F.O. Lehmann, S.P. Sane: Wing rotation and the aerodynamic basis of insect flight, Science 284(5422), 1954–1960 (1999)
J. Young, S.M. Walker, R.J. Bomphrey, G.K. Taylor, A.L.R. Thomas: Details of insect wing design and deformation enhance aerodynamic function and flight efficiency, Science 325(5947), 1549–1552 (2009)
L. Zhao, Q. Huang, X. Deng, S.P. Sane: Aerodynamic effects of flexibility in flapping wings, J. R. Soc. Interface 7(44), 485–497 (2010)
F.O. Lehmann, S.P. Sane, M. Dickinson: The aerodynamic effects of wing-wing interaction in flapping insect wings, J. Exp. Biol. 208(16), 3075–3092 (2005)
D. Lentink, S.R. Jongerius, N.L. Bradshaw: Flying Insects and Robots (Springer, Berlin, Heidelberg 2009)
G.C.H.E. de Croon, M.A. Groen, C. De Wagter, B. Remes, R. Ruijsink, B.W. van Oudheusden: Design, aerodynamics, and autonomy of the DelFly, Bioinspiration Biomim. 7(2), 025003 (2012)
M. Keennon, K. Klingebiel, H. Won, A. Andriukov: Tailless flapping wing propulsion and control development for the nano hummingbird micro air vehicle, Proc. Am. Helicopter Soc. Futur. Vert. Lift Aircr. Des. Conf. (2012)
K.Y. Ma, P. Chirarattananon, S.B. Fuller, R.J. Wood: Controlled flight of a biologically inspired, insect-scale robot, Science 340(6132), 603–607 (2013)
D. Lentink, M.H. Dickinson: Rotational accelerations stabilize leading edge vortices on revolving fly wings, J. Exp. Biol. 212(16), 2705–2719 (2009)
W. Shyy, H. Aono, C.-K. Kang, H. Liu: An Introduction to Flapping Wing Aerodynamics (Cambridge Univ. Press, Cambridge 2013)
C.P. Ellington, C. van den Berg, A.P. Willmott, A.L.R. Thomas: Leading-edge vortices in insect flight, Nature 384, 626–630 (1996)
D.R. Warrick, B.W. Tobalske, D. Powers: Lift production in the hovering hummingbird, Proc. R. Soc. Biol. Sci. (2009) pp. 3747–3752
F.T. Muijres, L.C. Johansson, A. Hedenstrom: Leading edge vortex in a slow-flying passerine, Biol. Lett. 8(4), 554–557 (2012)
J. Koo, T. Oka: Experimental Study on the Ground Effect of a Model Helicopter Rotor in Hovering, Tech. Rep. (NASA, Washington 1966)
S.P. Sane, M.H. Dickinson: The control of flight force by a applying wing: Lift and drag production, J. Exp. Biol. 204(15), 2607–2626 (2001)
M.C. Achtelik, K.-M. Doth, D. Gurdan, J. Stumpf: Design of a multi rotor MAV with regard to efficiency, dynamics and redundancy, Proc. AIAA Guid. Navig. Control Conf. (2012)
Ascending Technologies Ltd.: http://www.asctec.de (2015)
Sensefly (Parrot Company): http://www.sensefly.com (2000)
M.W. Achtelik: Advanced Closed Loop Visual Navigation for Micro Aerial Vehicles, Ph.D. Thesis (ETH Zurich, Zurich 2014)
A. Bachrach, S. Prentice, R. He, N. Roy: RANGE – Robust autonomous navigation in GPS-denied environments, J. Field Robotics 28, 644–666 (2011)
S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige, R. Siegwart: Keyframe-based visual-inertial slam using nonlinear optimization, Proc. Robotics Sci. Syst. (RSS) (2013)
S. Weiss: Vision Based Navigation for Micro Helicopters, Ph.D. Thesis (ETH Zurich, Zurich 2012)
A.I. Mourikis, S.I. Roumeliotis, J.W. Burdick: SC-KF mobile robot localization: A stochastic cloning kalman filter for processing relative-state measurements, IEEE Trans. Robotics 23(4), 717–730 (2007)
A. Bachrach, S. Prentice, R. He, P. Henry, A.S. Huang, M. Krainin, D. Maturana, D. Fox, N. Roy: Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments, Int. J. Robotics Res. 31, 1320–1343 (2012)
T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa, F. Ruess, M. Suppa, D. Burschka: Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue, IEEE Robotics Autom. Mag. 19(3), 46–56 (2012)
S. Bouabdallah: Design and Control of Quadrotors with Application to Autonomous Flying, Ph.D. Thesis (STI School of Engineering, EPFL, Lausann 2007)
T. Lee, M. Leoky, N.H. McClamroch: Geometric tracking control of a quadrotor UAV on SE(3), Proc. 49th IEEE Conf. Dec. Control (CDC) (2010) pp. 5420–5425
P. Doherty, J. Kvarnström, F. Heintz: A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems, Auton. Agents Multi-Agent Syst. 19(3), 332–377 (2009)
P.E. Hart, N.J. Nilsson, B. Raphael: A formal basis for the heuristic determination of minimum cost paths, Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)
S. Karaman, E. Frazzoli: Incremental sampling-based algorithms for optimal motion planning, Proc. Robotics Sci. Syst. (RSS), Zaragoza (2010)
L.E. Kavraki, P. Švestka, J.-C. Latombe, M.H. Overmars: Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robotics Autom. 12(4), 566–580 (1996)
S.M. LaValle, J.J. Kuffner: Randomized kinodynamic planning, Int. J. Robotics Res. 20(5), 378–400 (2001)
A. Bry, N. Roy: Rapidly-exploring random belief trees for motion planning under uncertainty, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 723–730
H. Cover, S. Choudhury, S. Scherer, S. Singh: Sparse tangential network (SPARTAN): Motion planning for micro aerial vehicles, IEEE Proc. Int. Conf. Robotics Autom. (ICRA) (2013)
R. He, S. Prentice, N. Roy: Planning in information space for a quadrotor helicopter in a gps-denied environments, IEEE Proc. Int. Conf. Robotics Autom. (ICRA) (2008) pp. 1814–1820
Q. Lindsey, D. Mellinger, V. Kumar: Construction with quadrotor teams, Auton. Robots 33(3), 323–336 (2012)
J. Willmann, F. Augugliaro, T. Cadalbert, R. D'Andrea, F. Gramazio, M. Kohler: Aerial robotic construction towards a new field of architectural research, Int. J. Archt. Comput. 10(3), 439–460 (2012)
G. Darivianakis, K. Alexis, M. Burri, R. Siegwart: Hybrid predictive control for aerial robotic physical interaction towards inspection operations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2014)
L. Marconi, R. Naldi, L. Gentili: Modelling and control of a flying robot interacting with the environment, Automatica 47(12), 2571–2583 (2011)
Z. Lin: UAV for mapping -- low altitude photogrammetric survey, Proc. 21st ISPRS Congr. Techn. Commis. I, Beijing (2008) pp. 1183–1186
J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, R. Siegwart: A UAV system for inspection of industrial facilities, Proc. IEEE Aerosp. Conf. (2013) pp. 1–8
Cyberhawk: Aerial Inspection and Suervying Specialists, http://www.thecyberhawk.com (2015)
Petrobot Project: http://www.petrobotproject.eu/
ARCAS: Aerial Robotics Cooperative Assembly System, http://www.arcas-project.eu/
EuRoC: European Robotics Challenges, http://www.euroc-project.eu/
ARGOS Challenge: http://www.argos-challenge.com/
E.R. Hunt Jr., W.D. Hively, S.J. Fujikawa, D.S. Linden, C.S.T. Daughtry, G.W. McCarty: Acquisition of nir-green-blue digital photographs from unmanned aircraft for crop monitoring, Remote Sens. 2, 290–305 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Video-References
Video-References
-
:
-
Delfly II in hover available from http://handbookofrobotics.org/view-chapter/26/videodetails/493
-
:
-
AtlantikSolar field-trials available from http://handbookofrobotics.org/view-chapter/26/videodetails/602
-
:
-
senseSoar UAV Avionics testing available from http://handbookofrobotics.org/view-chapter/26/videodetails/603
-
:
-
Structural inspection path planning via iterative viewpoint resamplingwith application to aerial robotics available from http://handbookofrobotics.org/view-chapter/26/videodetails/604
-
:
-
sFly: Visual-inertial SLAM for a small helicopter in large outdoor environments available from http://handbookofrobotics.org/view-chapter/26/videodetails/688
-
:
-
UAV stabilization, mapping & obstacle avoidance using VI-sensor available from http://handbookofrobotics.org/view-chapter/26/videodetails/689
-
:
-
Project Skye – autonomous blimp available from http://handbookofrobotics.org/view-chapter/26/videodetails/690
-
:
-
Flight stability in aerial redundant manipulators available from http://handbookofrobotics.org/view-chapter/26/videodetails/693
-
:
-
The astounding athletic power of quadcopters available from http://handbookofrobotics.org/view-chapter/26/videodetails/694
-
:
-
Robots that fly … and cooperate available from http://handbookofrobotics.org/view-chapter/26/videodetails/695
-
:
-
A robot that flies like a bird available from http://handbookofrobotics.org/view-chapter/26/videodetails/696
-
:
-
Robotic insects make first controlled flight available from http://handbookofrobotics.org/view-chapter/26/videodetails/697
-
:
-
Towards valve turning using a dual-arm aerial manipulator available from http://handbookofrobotics.org/view-chapter/26/videodetails/719
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Leutenegger, S. et al. (2016). Flying Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-32552-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32550-7
Online ISBN: 978-3-319-32552-1
eBook Packages: EngineeringEngineering (R0)