Skip to main content

Sonar Sensing

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (GlossaryTerm

CTFM

) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

CMOS:

complementary metal-oxide-semiconductor

CTFM:

continuous-transmission frequency modulation

DFT:

discrete Fourier transform

DSP:

digital signal processor

FFT:

fast Fourier transform

FPGA:

field-programmable gate array

FR:

false range

HMM:

hidden Markov model

IAD:

interaural amplitude difference

ITD:

interaural time difference

MEMS:

microelectromechanical system

MLE:

maximum likelihood estimate

MR:

multiple reflection

PAS:

pseudo-amplitude scan

PVDF:

polyvinylidene fluoride

SD:

standard deviation

SLAM:

simultaneous localization and mapping

TOF:

time-of-flight

VO:

virtual object

References

  1. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders: Fundamentals of Acoustics (Wiley, New York 1982)

    Google Scholar 

  2. R.C. Weast, M.J. Astle (Eds.): CRC Handbook of Chemistry and Physics, 59th edn. (CRC, Boca Raton 1978)

    Google Scholar 

  3. J. Borenstein, H.R. Everett, L. Feng: Navigating Mobile Robots (Peters, Wellesley 1996)

    MATH  Google Scholar 

  4. R. Kuc, M.W. Siegel: Physically-based simulation model for acoustic sensor robot navigation, IEEE Trans. Pattern Anal. Mach. Intell. 9(6), 766–778 (1987)

    Article  Google Scholar 

  5. SensComp: 7000, http://www.senscomp.com (2007)

  6. H.H. Poole: Fundamentals of Robotics Engineering (Van Nostrand, New York 1989)

    Book  Google Scholar 

  7. J.E. Piercy: American National Standard: Method for Calculation of the Absorption of Sound by the Atmosphere, Vol. ANSI SI-26-1978 (Acoust. Soc. Am., Washington 1978)

    Google Scholar 

  8. B. Barshan, R. Kuc: A bat-like sonar system for obstacle localization, IEEE Trans. Syst. Man Cybern. 22(4), 636–646 (1992)

    Article  Google Scholar 

  9. R. Kuc: Three dimensional docking using qualitative sonar. In: Intelligent Autonomous Systems IAS-3, ed. by F.C.A. Groen, S. Hirose, C.E. Thorpe (IOS, Washington 1993) pp. 480–488

    Google Scholar 

  10. R. Kuc: Biomimetic sonar locates and recognizes objects, J. Ocean Eng. 22(4), 616–624 (1997)

    Article  Google Scholar 

  11. L. Kleeman, R. Kuc: Mobile robot sonar for target localization and classification, Int. J. Robotics Res. 14(4), 295–318 (1995)

    Article  Google Scholar 

  12. B. Stanley: A Comparison of Binaural Ultrasonic Sensing Systems, Ph.D. Thesis (University of Wollongong, Wollongong 2003)

    Google Scholar 

  13. Material Systems Inc.: http://www.matsysinc.com/

  14. F.L. Degertekin, S. Calmes, B.T. Khuri-Yakub, X. Jin, I. Ladabaum: Fabrication and characterization of surface micromachined capacitive ultrasonic immersion transducers, J. Microelectromech. Syst. 8(1), 100–114 (1999)

    Article  Google Scholar 

  15. B. Barshan, R. Kuc: Differentiating sonar reflections from corners and planes by employing an intelligent sensor, IEEE Trans. Pattern Anal. Mach. Intell. 12(6), 560–569 (1990)

    Article  Google Scholar 

  16. A. Freedman: A mechanism of acoustic echo formation, Acustica 12, 10–21 (1962)

    MathSciNet  MATH  Google Scholar 

  17. A. Freedman: The high frequency echo structure of somae simple body shapes, Acustica 12, 61–70 (1962)

    MathSciNet  MATH  Google Scholar 

  18. Ö. Bozma, R. Kuc: A physical model-based analysis of heterogeneous environments using sonar – ENDURA method, IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 497–506 (1994)

    Article  Google Scholar 

  19. Ö. Bozma, R. Kuc: Characterizing pulses reflected from rough surfaces using ultrasound, J. Acoust. Soc. Am. 89(6), 2519–2531 (1991)

    Article  Google Scholar 

  20. P.J. McKerrow: Echolocation – from range to outline segments. In: Intelligent Autonomous Systems IAS-3, ed. by F.C.A. Groen, S. Hirose, C.E. Thorpe (IOS, Washington 1993) pp. 238–247

    Google Scholar 

  21. J. Thomas, C. Moss, M. Vater (Eds.): Echolocation in Bats and Dolphins (University of Chicago Press, Chicago 2004)

    Google Scholar 

  22. J. Borenstein, Y. Koren: Error eliminating rapid ultrasonic firing for mobile robot obstacle avoidance, IEEE Trans. Robotics Autom. 11(1), 132–138 (1995)

    Article  Google Scholar 

  23. L. Kleeman: Fast and accurate sonar trackers using double pulse coding, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1999) pp. 1185–1190

    Google Scholar 

  24. R. Kuc: Pseudo-amplitude sonar maps, IEEE Trans. Robotics Autom. 17(5), 767–770 (2001)

    Article  Google Scholar 

  25. H. Peremans, K. Audenaert, J.M. Van Campenhout: A high-resolution sensor based on tri-aural perception, IEEE Trans. Robotics Autom. 9(1), 36–48 (1993)

    Article  Google Scholar 

  26. A. Sabatini, O. Di Benedetto: Towards a robust methodology for mobile robot localization using sonar, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 3142–3147

    Google Scholar 

  27. L. Kleeman: Advanced sonar with velocity compenstation, Int. J. Robotics Res. 23(2), 111–126 (2004)

    Article  Google Scholar 

  28. A. Elfes: Sonar-based real world mapping and navigation, IEEE Trans. Robotics Autom. 3, 249–265 (1987)

    Article  Google Scholar 

  29. S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox, D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, D. Schulz: MINERVA: A second geration mobile tour-guide robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 1999–2005

    Google Scholar 

  30. K. Konolige: Improved occupancy grids for map building, Auton. Robotics 4, 351–367 (1997)

    Article  Google Scholar 

  31. R. Grabowski, P. Khosla, H. Choset: An enhanced occupancy map for exploration via pose separation, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2003) pp. 705–710

    Google Scholar 

  32. J.D. Tardos, J. Neira, P.M. Newman, J.J. Leonard: Robust mapping and localization in indoor environments using sonar data, Int. J. Robotics Res. 21(6), 311–330 (2002)

    Article  Google Scholar 

  33. O. Aycard, P. Larouche, F. Charpillet: Mobile robot localization in dynamic environments using places recognition, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 3135–3140

    Google Scholar 

  34. B. Kuipers, P. Beeson: Bootstrap learning for place recognition, Proc. 18th Nat. Conf. Artif. Intell. (ANAI) (2002)

    Google Scholar 

  35. A. Bandera, C. Urdiales, F. Sandoval: Autonomous global localization using Markov chains and optimized sonar landmarks, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2000) pp. 288–293

    Google Scholar 

  36. R. Kuc: Biomimetic sonar and neuromorphic processing eliminate reverberation artifacts, IEEE Sens. J. 7(3), 361–369 (2007)

    Article  Google Scholar 

  37. A.M. Sabatini: A stochastic model of the time-of-flight noise in airborne sonar ranging systems, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(3), 606–614 (1997)

    Article  Google Scholar 

  38. C. Biber, S. Ellin, E. Sheck, J. Stempeck: The Polaroid ultrasonic ranging system, Proc. 67th Audio Eng. Soc. Conv. (1990)

    Google Scholar 

  39. R. Kuc: Forward model for sonar maps produced with the Polaroid ranging module, IEEE Trans. Robotics Autom. 19(2), 358–362 (2003)

    Article  Google Scholar 

  40. M.K. Brown: Feature extraction techniques for recognizing solid objects with an ultrasonic range sensor, IEEE J. Robotics Autom. 1(4), 191–205 (1985)

    Article  Google Scholar 

  41. N.L. Harper, P.J. McKerrow: Classification of plant species from CTFM ultrasonic range data using a neural network, Proc. IEEE Int. Conf. Neural Netw. (1995) pp. 2348–2352

    Google Scholar 

  42. Z. Politis, P.J. Probert: Target localization and identification using CTFM sonar imaging: The AURBIT method, Proc. IEEE Int. Symp. Comput. Intell. Robotics Autom. (CIRLA) (1999) pp. 256–261

    Google Scholar 

  43. R. Mueller, R. Kuc: Foliage echoes: A probe into the ecological acoustics of bat echolocation, J. Acoust. Soc. Am. 108(2), 836–845 (2000)

    Article  Google Scholar 

  44. P.N.T. Wells: Biomedical Ultrasonics (Academic, New York 1977)

    Google Scholar 

  45. J.L. Prince, J.M. Links: Medical Imaging Signals and Systems (Prentice Hall, Upper Saddle River 2006)

    Google Scholar 

  46. F.J. Alvarez, R. Kuc: High resolution adaptive spiking sonar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 1024–1033 (2009)

    Article  Google Scholar 

  47. F.J. Alvarez, R. Kuc, T. Aguilera: Identifying fabrics with a variable emission airborne spiking sonar, IEEE Sens. J. 11(9), 1905–1912 (2011)

    Article  Google Scholar 

  48. J.J. Leonard, H.F. Durrant-Whyte: Mobile robot localization by tracking geometric beacons, IEEE Trans. Robotics Autom. 7(3), 376–382 (1991)

    Article  Google Scholar 

  49. R. Kuc: Generating B-scans of the environmental with conventional sonar, IEEE Sens. J. 8(2), 151–160 (2008)

    Article  Google Scholar 

  50. P.M. Woodward: Probability and Information Theory with Applications to Radar, 2nd edn. (Pergamon, Oxford 1964)

    MATH  Google Scholar 

  51. A. Heale, L. Kleeman: Fast target classification using sonar, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001) pp. 1446–1451

    Google Scholar 

  52. S. Fazli, L. Kleeman: A real time advanced sonar ring with simultaneous firing, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 1872–1877

    Google Scholar 

  53. T. Yata, A. Ohya, S. Yuta: A fast and accurate sonar-ring sensor for a mobile robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 630–636

    Google Scholar 

  54. L. Kleeman: Scanned monocular sonar and the doorway problem, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1996) pp. 96–103

    Google Scholar 

  55. G. Kao, P. Probert: Feature extraction from a broadband sonar sensor for mapping structured environments efficiently, Int. J. Robotics Res. 19(10), 895–913 (2000)

    Article  Google Scholar 

  56. B. Stanley, P. McKerrow: Measuring range and bearing with a binaural ultrasonic sensor, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1997) pp. 565–571

    Google Scholar 

  57. P.T. Gough, A. de Roos, M.J. Cusdin: Continuous transmission FM sonar with one octave bandwidth and no blind time. In: Autonomous Robot Vehicles, ed. by I.J. Cox, G.T. Wilfong (Springer, Berlin, Heidelberg 1990) pp. 117–122

    Chapter  Google Scholar 

  58. L. Kay: A CTFM acoustic spatial sensing technology: Its use by blind persons and robots, Sens. Rev. 19(3), 195–201 (1999)

    Article  Google Scholar 

  59. L. Kay: Auditory perception and its relation to ultrasonic blind guidance aids, J. Br. Inst. Radio Eng. 24, 309–319 (1962)

    Google Scholar 

  60. P.J. McKerrow, N.L. Harper: Recognizing leafy plants with in-air sonar, IEEE Sens. J. 1(4), 245–255 (2001)

    Article  Google Scholar 

  61. K. Audenaert, H. Peremans, Y. Kawahara, J. Van Campenhout: Accurate ranging of multiple objects using ultrasonic sensors, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992) pp. 1733–1738

    Google Scholar 

  62. J. Borenstein, Y. Koren: Noise rejection for ultrasonic sensors in mobile robot applications, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992) pp. 1727–1732

    Google Scholar 

  63. K.W. Jorg, M. Berg: Mobile robot sonar sensing with pseudo-random codes, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 2807–2812

    Google Scholar 

  64. S. Shoval, J. Borenstein: Using coded signals to benefit from ultrasonic sensor crosstalk in mobile robot obstacle avoidance, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 2879–2884

    Google Scholar 

  65. K. Nakahira, T. Kodama, T. Furuhashi, H. Maeda: Design of digital polarity correlators in a multiple-user sonar ranging system, IEEE Trans. Instrum. Meas. 54(1), 305–310 (2005)

    Article  Google Scholar 

  66. A. Heale, L. Kleeman: A sonar sensor with random double pulse coding, Aust. Conf. Robotics Autom. (2000) pp. 81–86

    Google Scholar 

  67. A. Diosi, G. Taylor, L. Kleeman: Interactive SLAM using Laser and Advanced Sonar, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 1115–1120

    Google Scholar 

  68. S.A. Walter: The sonar ring: obstacle detection for a mobile robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 1574–1578

    Google Scholar 

  69. S. Fazli, L. Kleeman: Wall following and obstacle avoidance results from a multi-DSP sonar ring on a mobile robot, Proc. IEEE Int. Conf. Mechatron. Autom. (2005) pp. 432–436

    Google Scholar 

  70. S. Fazli, L. Kleeman: Sensor design and signal processing for an advanced sonar ring, Robotica 24(4), 433–446 (2006)

    Article  Google Scholar 

  71. D. Browne, L. Kleeman: An advanced sonar ring design with 48 channels of continuous echo processing using matched filters, Proc. IEEE/RSJ Intell. Robots Syst. Conf. (IROS) (2009) pp. 4040–4046

    Google Scholar 

  72. D.C. Browne, L. Kleeman: A sonar ring with continuous matched filtering and dynamically switched templates, Robotica 30(6), 891–912 (2012)

    Article  Google Scholar 

  73. L. Kleeman, Akihisa Ohya: The design of a transmitter with a parabolic conical reflector for a sonar ring, Aust. Conf. Robotics Autom. (ICRA), Auckland (2006)

    Google Scholar 

  74. D.C. Browne, L. Kleeman: A double refresh rate sonar ring with FPGA-based continuous matched filtering, Robotica 30(7), 1051–1062 (2012)

    Article  Google Scholar 

  75. J. Steckel, A. Boen, H. Peremans: Broadband 3-D sonar system using a sparse array for indoor navigation, IEEE Trans. Robotics 91, 1–11 (2012)

    Google Scholar 

  76. W.W.L. Au: The Sonar of Dolphins (Springer, Berlin, Heidelberg 1993)

    Book  Google Scholar 

  77. R. Kuc, V. Kuc: Bat wing air pressures may deflect prey structures to provide echo cues for detecting prey in clutter, J. Acoust. Soc. Am. 132(3), 1776–1779 (2012)

    Article  Google Scholar 

  78. B. Barshan, R. Kuc: Bat-like sonar system strategies for mobile robots, Proc. IEEE Int. Conf. Syst. Man Cybern. (1991)

    Google Scholar 

  79. R. Kuc: Biologically motivated adaptive sonar, J. Acoust. Soc. Am. 100(3), 1849–1854 (1996)

    Article  Google Scholar 

  80. V.A. Walker, H. Peremans, J.C.T. Hallam: One tone, two ears, three dimensions: A robotic investigation of pinnae movements used by rhinolophid and hipposiderid bats, J. Acoust. Soc. Am. 104, 569–579 (1998)

    Article  Google Scholar 

  81. L. Gao, S. Balakrishnan, W. He, Z. Yan, R. Mueller: Ear deformations give bats a physical mechanism for fast adaptation of ultrasonic beam patterns, Phys. Rev. Lett. 1007, 214–301 (2011)

    Google Scholar 

  82. R. Kuc: Biomimetic sonar system recognizes objects using binaural information, J. Acoust. Soc. Am. 102(2), 689–696 (1997)

    Article  Google Scholar 

  83. R. Kuc: Recognizing retro-reflectors with an obliquely-oriented multi-point sonar and acoustic flow, Int. J. Robotics Res. 22(2), 129–145 (2003)

    Article  Google Scholar 

  84. T. Horiuchi, T. Swindell, D. Sander, P. Abshire: A low-power CMOS neural amplifier with amplitude measurements for spike sorting, Proc. Int. Symp. Circuits Syst. (ISCAS), Vol. IV (2004) pp. 29–32

    Google Scholar 

  85. R. Kuc: Neuromorphic processing of moving sonar data for estimating passing range, IEEE Sens. J. 7(5), 851–859 (2007)

    Article  Google Scholar 

  86. R. Kuc: Binaural sonar electronic travel aid provides vibrotactile cues for landmark, reflector motion, and surface texture classification, IEEE Trans. Biomed. Eng. 49(10), 1173–1180 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay Kleeman .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Sonar guided chair at Yale available from http://handbookofrobotics.org/view-chapter/30/videodetails/295

:

Vergence sonar available from http://handbookofrobotics.org/view-chapter/30/videodetails/301

:

Side-looking TOF sonar simulation available from http://handbookofrobotics.org/view-chapter/30/videodetails/302

:

Side-looking multi-pulse sonar moving down cider-block hallway available from http://handbookofrobotics.org/view-chapter/30/videodetails/303

:

Antwerp biomimetic sonar tracking complex object available from http://handbookofrobotics.org/view-chapter/30/videodetails/311

:

Biological bat ear deformation in sonar detection available from http://handbookofrobotics.org/view-chapter/30/videodetails/312

:

Monash DSP sonar tracking a moving plane available from http://handbookofrobotics.org/view-chapter/30/videodetails/313

:

Side-looking sonar system traveling down hallway (camera view) available from http://handbookofrobotics.org/view-chapter/30/videodetails/314

:

B-scan image of indoor potted tree using multi-pulse sonar available from http://handbookofrobotics.org/view-chapter/30/videodetails/315

:

Antwerp biomimetic sonar tracking single ball available from http://handbookofrobotics.org/view-chapter/30/videodetails/316

:

Antwerp biomimetic sonar system tracking two balls available from http://handbookofrobotics.org/view-chapter/30/videodetails/317

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kleeman, L., Kuc, R. (2016). Sonar Sensing. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics