Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter introduces visual servo control, using computer vision data in the servo loop to control the motion of a robot. We first describe the basic techniques that are by now well established in the field. We give a general overview of the formulation of the visual servo control problem, and describe the two archetypal visual servo control schemes: image-based and pose-based visual servo control. We then discuss performance and stability issues that pertain to these two schemes, motivating advanced techniques. Of the many advanced techniques that have been developed, we discuss two-and-a-half-dimensional (GlossaryTerm

2.5-D

), hybrid, partitioned, and switched approaches. Having covered a variety of control schemes, we deal with target tracking and controlling motion directly in the joint space and extensions to under-actuated ground and aerial robots. We conclude by describing applications of visual servoing in robotics.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

2.5-D:

two-and-a-half-dimensional

3-D:

three-dimensional

IBVS:

image-based visual servo control

IMU:

inertial measurement unit

LQG:

linear quadratic Gaussian

MEMS:

microelectromechanical system

PBVS:

pose-based visual servo control

VS:

visual servo

References

  1. L. Weiss, A. Sanderson, C. Neuman: Dynamic sensor-based control of robots with visual feedback, IEEE J. Robot. Autom. 3, 404–417 (1987)

    Article  Google Scholar 

  2. S. Hutchinson, G. Hager, P. Corke: A tutorial on visual servo control, IEEE Trans. Robot. Autom. 12, 651–670 (1996)

    Article  Google Scholar 

  3. B. Espiau, F. Chaumette, P. Rives: A new approach to visual servoing in robotics, IEEE Trans. Robot. Autom. 8, 313–326 (1992)

    Article  Google Scholar 

  4. J. Feddema, O. Mitchell: Vision-guided servoing with feature-based trajectory generation, IEEE Trans. Robot. Autom. 5, 691–700 (1989)

    Article  Google Scholar 

  5. D. Forsyth, J. Ponce: Computer Vision: A Modern Approach (Prentice Hall, Upper Saddle River 2003)

    Google Scholar 

  6. Y. Ma, S. Soatto, J. Kosecka, S. Sastry: An Invitation to 3-D Vision: From Images to Geometric Models (Springer, New York 2003)

    MATH  Google Scholar 

  7. P. Corke: Robotics, Vision and Control: Fundamental Algorithms in MATLAB (Springer, Berlin, Heidelberg 2011)

    Book  MATH  Google Scholar 

  8. H. Michel, P. Rives: Singularities in the Determination of the Situation of a Robot Effector from the Perspective View of Three Points. Res. Rep. RR-1850 (INRIA 1993)

    Google Scholar 

  9. M. Fischler, R. Bolles: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. E. Malis: Improving vision-based control using efficient second-order minimization techniques, IEEE Int. Conf. Robot. Autom., New Orleans (2004) pp. 1843–1848

    Google Scholar 

  11. E. Marchand, F. Spindler, F. Chaumette: ViSP for visual servoing: A generic software platform with a wide class of robot control skills, IEEE Robot. Autom. Mag. 12(4), 40–52 (2005), https://team.inria.fr/lagadic/visp/visp.html

    Article  Google Scholar 

  12. P. Corke, S. Hutchinson: A new partitioned approach to image-based visual servo control, IEEE Trans. Robot. Autom. 17, 507–515 (2001)

    Article  Google Scholar 

  13. F. Chaumette: Potential problems of stability and convergence in image-based and position-based visual servoing, Lect. Note. Contr. Inform. Sci. 237, 66–78 (1998)

    Google Scholar 

  14. E. Malis: Visual servoing invariant to changes in camera intrinsic parameters, IEEE Trans. Robot. Autom. 20, 72–81 (2004)

    Article  Google Scholar 

  15. A. Isidori: Nonlinear Control Systems, 3rd edn. (Springer, Berlin, Heidelberg 1995)

    Book  MATH  Google Scholar 

  16. G. Hager, W. Chang, A. Morse: Robot feedback control based on stereo vision: Towards calibration-free hand-eye coordination, IEEE Control Syst. Mag. 15, 30–39 (1995)

    Article  Google Scholar 

  17. M. Iwatsuki, N. Okiyama: A new formulation of visual servoing based on cylindrical coordinate system, IEEE Trans. Robot. Autom. 21, 266–273 (2005)

    Article  Google Scholar 

  18. F. Chaumette, P. Rives, B. Espiau: Classification and realization of the different vision-based tasks, Robot. Autom. Syst. 7, 199–228 (1993)

    Google Scholar 

  19. A. Castano, S. Hutchinson: Visual compliance: Task directed visual servo control, IEEE Trans. Robot. Autom. 10, 334–342 (1994)

    Article  Google Scholar 

  20. G. Hager: A modular system for robust positioning using feedback from stereo vision, IEEE Trans. Robot. Autom. 13, 582–595 (1997)

    Article  Google Scholar 

  21. F. Chaumette: Image moments: A general and useful set of features for visual servoing, IEEE Trans. Robot. Autom. 20, 713–723 (2004)

    Article  Google Scholar 

  22. O. Tahri, F. Chaumette: Point-based and region-based image moments for visual servoing of planar objects, IEEE Trans. Robot. 21, 1116–1127 (2005)

    Article  Google Scholar 

  23. C. Geyer, K. Daniilidis: Catadioptric projective geometry, Int. J. Comput. Vis. 45(3), 223–243 (2001)

    Article  MATH  Google Scholar 

  24. T. Hamel, R. Mahony: Visual servoing of an under-actuated dynamic rigid-body system: An image-based approach, IEEE Trans Robot. 18(2), 187–198 (2002)

    Article  Google Scholar 

  25. I. Suh: Visual servoing of robot manipulators by fuzzy membership function based neural networks. In: Visual Servoing, Robotics and Automated Systems, Vol. 7, ed. by K. Hashimoto (World Scientific, Singapore 1993) pp. 285–315

    Chapter  Google Scholar 

  26. G. Wells, C. Venaille, C. Torras: Vision-based robot positioning using neural networks, Image Vis. Comput. 14, 75–732 (1996)

    Article  Google Scholar 

  27. J.T. Lapresté, F. Jurie, F. Chaumette: An efficient method to compute the inverse jacobian matrix in visual servoing, IEEE Int. Conf. Robot. Autom., New Orleans (2004) pp. 727–732

    Google Scholar 

  28. K. Hosada, M. Asada: Versatile visual servoing without knowledge of true jacobian, IEEE/RSJ Int. Conf. Intell. Robots Syst., München (1994) pp. 186–193

    Google Scholar 

  29. M. Jägersand, O. Fuentes, R. Nelson: Experimental evaluation of uncalibrated visual servoing for precision manipulation, IEEE Int. Conf. Robot. Autom., Albuquerque (1997) pp. 2874–2880

    Google Scholar 

  30. J. Piepmeier, G.M. Murray, H. Lipkin: Uncalibrated dynamic visual servoing, IEEE Trans. Robot. Autom. 20, 143–147 (2004)

    Article  Google Scholar 

  31. K. Deguchi: Direct interpretation of dynamic images and camera motion for visual servoing without image feature correspondence, J. Robot. Mechatron. 9(2), 104–110 (1997)

    Article  Google Scholar 

  32. W. Wilson, C. Hulls, G. Bell: Relative end-effector control using cartesian position based visual servoing, IEEE Trans. Robot. Autom. 12, 684–696 (1996)

    Article  Google Scholar 

  33. B. Thuilot, P. Martinet, L. Cordesses, J. Gallice: Position based visual servoing: Keeping the object in the field of vision, IEEE Int. Conf. Robot. Autom., Washington (2002) pp. 1624–1629

    Google Scholar 

  34. D. Dementhon, L. Davis: Model-based object pose in 25 lines of code, Int. J. Comput. Vis. 15, 123–141 (1995)

    Article  Google Scholar 

  35. D. Lowe: Three-dimensional object recognition from single two-dimensional images, Artif. Intell. 31(3), 355–395 (1987)

    Article  Google Scholar 

  36. E. Malis, F. Chaumette, S. Boudet: 2-1/2 D visual servoing, IEEE Trans. Robot. Autom. 15, 238–250 (1999)

    Article  Google Scholar 

  37. E. Malis, F. Chaumette: Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods, IEEE Trans. Robot. Autom. 18, 176–186 (2002)

    Article  Google Scholar 

  38. J. Chen, D. Dawson, W. Dixon, A. Behal: Adaptive homography-based visual servo tracking for fixed camera-in-hand configurations, IEEE Trans. Control Syst. Technol. 13, 814–825 (2005)

    Article  Google Scholar 

  39. G. Morel, T. Leibezeit, J. Szewczyk, S. Boudet, J. Pot: Explicit incorporation of 2-D constraints in vision-based control of robot manipulators, Lect. Note. Contr. Inform. Sci. 250, 99–108 (2000)

    Google Scholar 

  40. F. Chaumette, E. Malis: 2 1/2 D visual servoing: a possible solution to improve image-based and position-based visual servoings, IEEE Int. Conf. Robot. Autom., San Fransisco (2000) pp. 630–635

    Google Scholar 

  41. E. Cervera, A.D. Pobil, F. Berry, P. Martinet: Improving image-based visual servoing with three-dimensional features, Int. J. Robot. Res. 22, 821–840 (2004)

    Article  Google Scholar 

  42. F. Schramm, G. Morel, A. Micaelli, A. Lottin: Extended 2-D visual servoing, IEEE Int. Conf. Robot. Autom., New Orleans (2004) pp. 267–273

    Google Scholar 

  43. N. Papanikolopoulos, P. Khosla, T. Kanade: Visual tracking of a moving target by a camera mounted on a robot: A combination of vision and control, IEEE Trans. Robot. Autom. 9, 14–35 (1993)

    Article  Google Scholar 

  44. K. Hashimoto, H. Kimura: LQ optimal and nonlinear approaches to visual servoing, Robot. Autom. Syst. 7, 165–198 (1993)

    Google Scholar 

  45. B. Nelson, P. Khosla: Strategies for increasing the tracking region of an eye-in-hand system by singularity and joint limit avoidance, Int. J. Robot. Res. 14, 225–269 (1995)

    Article  Google Scholar 

  46. B. Nelson, P. Khosla: Force and vision resolvability for assimilating disparate sensory feedback, IEEE Trans. Robot. Autom. 12, 714–731 (1996)

    Article  Google Scholar 

  47. R. Sharma, S. Hutchinson: Motion perceptibility and its application to active vision-based servo control, IEEE Trans. Robot. Autom. 13, 607–617 (1997)

    Article  Google Scholar 

  48. E. Marchand, F. Chaumette, A. Rizzo: Using the task function approach to avoid robot joint limits and kinematic singularities in visual servoing, IEEE/RSJ Int. Conf. Intell. Robots Syst., Osaka (1996) pp. 1083–1090

    Google Scholar 

  49. E. Marchand, G. Hager: Dynamic sensor planning in visual servoing, IEEE Int. Conf. Robot. Autom., Leuven (1998) pp. 1988–1993

    Google Scholar 

  50. N. Cowan, J. Weingarten, D. Koditschek: Visual servoing via navigation functions, IEEE Trans. Robot. Autom. 18, 521–533 (2002)

    Article  Google Scholar 

  51. N. Gans, S. Hutchinson: An asymptotically stable switched system visual controller for eye in hand robots, IEEE/RSJ Int. Conf. Intell. Robots Syst., Las Vegas (2003) pp. 735–742

    Google Scholar 

  52. G. Chesi, K. Hashimoto, D. Prattichizio, A. Vicino: Keeping features in the field of view in eye-in-hand visual servoing: a switching approach, IEEE Trans. Robot. Autom. 20, 908–913 (2004)

    Article  Google Scholar 

  53. K. Hosoda, K. Sakamato, M. Asada: Trajectory generation for obstacle avoidance of uncalibrated stereo visual servoing without 3-D reconstruction, IEEE/RSJ Int. Conf. Intell. Robots Syst. 3, Pittsburgh (1995) pp. 29–34

    Google Scholar 

  54. Y. Mezouar, F. Chaumette: Path planning for robust image-based control, IEEE Trans. Robot. Autom. 18, 534–549 (2002)

    Article  Google Scholar 

  55. G. Chesi: Visual servoing path-planning via homogeneous forms and LMI optimizations, IEEE Trans. Robot. 25(2), 281–291 (2009)

    Article  Google Scholar 

  56. L. Matthies, T. Kanade, R. Szeliski: Kalman filter-based algorithms for estimating depth from image sequences, Int. J. Comput. Vis. 3(3), 209–238 (1989)

    Article  Google Scholar 

  57. C.E. Smith, N. Papanikolopoulos: Computation of shape through controlled active exploration, IEEE Int. Conf. Robot. Autom., San Diego (1994) pp. 2516–2521

    Google Scholar 

  58. A. De Luca, G. Oriolo, P. Robuffo Giordano: Feature depth observation for image-based visual servoing: Theory and experiments, Int. J. Robot. Res. 27(10), 1093–1116 (2008)

    Article  Google Scholar 

  59. R. Basri, E. Rivlin, I. Shimshoni: Visual homing: Surfing on the epipoles, Int. J. Comput. Vis. 33, 117–137 (1999)

    Article  Google Scholar 

  60. E. Malis, F. Chaumette, S. Boudet: 2 1/2 D visual servoing with respect to unknown objects through a new estimation scheme of camera displacement, Int. J. Comput. Vis. 37, 79–97 (2000)

    Article  MATH  Google Scholar 

  61. O. Faugeras: Three-Dimensional Computer Vision: A Geometric Viewpoint (MIT Press, Cambridge 1993)

    Google Scholar 

  62. G. Silveira, E. Malis: Direct visual servoing: Vision-based estimation and control using only nonmetric information, IEEE Trans. Robot. 28(4), 974–980 (2012)

    Article  Google Scholar 

  63. P. Corke, M. Goods: Controller design for high performance visual servoing, 12th World Congr. IFAC'93, Sydney (1993) pp. 395–398

    Google Scholar 

  64. F. Bensalah, F. Chaumette: Compensation of abrupt motion changes in target tracking by visual servoing, IEEE/RSJ Int. Conf. Intell. Robots Syst., Pittsburgh (1995) pp. 181–187

    Google Scholar 

  65. P. Allen, B. Yoshimi, A. Timcenko, P. Michelman: Automated tracking and grasping of a moving object with a robotic hand-eye system, IEEE Trans. Robot. Autom. 9, 152–165 (1993)

    Article  Google Scholar 

  66. K. Hashimoto, H. Kimura: Visual servoing with non linear observer, IEEE Int. Conf. Robot. Autom., Nagoya (1995) pp. 484–489

    Google Scholar 

  67. A. Rizzi, D. Koditschek: An active visual estimator for dexterous manipulation, IEEE Trans. Robot. Autom. 12, 697–713 (1996)

    Article  Google Scholar 

  68. R. Ginhoux, J. Gangloff, M. de Mathelin, L. Soler, M.A. Sanchez, J. Marescaux: Active filtering of physiological motion in robotized surgery using predictive control, IEEE Trans. Robot. 21, 67–79 (2005)

    Article  Google Scholar 

  69. J. Gangloff, M. de Mathelin: Visual servoing of a 6-DOF manipulator for unknown 3-D profile following, IEEE Trans. Robot. Autom. 18, 511–520 (2002)

    Article  Google Scholar 

  70. R. Tsai, R. Lenz: A new technique for fully autonomous efficient 3-D robotics hand-eye calibration, IEEE Trans. Robot. Autom. 5, 345–358 (1989)

    Article  Google Scholar 

  71. N. Guenard, T. Hamel, R. Mahony: A practical visual servo control for an unmanned aerial vehicle, IEEE Trans. Robot. 24(2), 331–340 (2008)

    Article  Google Scholar 

  72. G.L. Mariottini, G. Oriolo, D. Prattichizo: Image-based visual servoing for nonholonomic mobile robots using epipolar geometry, IEEE Trans. Robot. 23(1), 87–100 (2007)

    Article  Google Scholar 

  73. G. Lopez-Nicolas, J.J. Guerrero, C. Sagues: Visual control through the trifocal tensor for nonholonomic robots, Robot. Auton. Syst. 58(2), 216–226 (2010)

    Article  Google Scholar 

  74. P. Corke: Robotics, Vision and Control: Fundamental Algorithms in MATLAB, Springer Tracts in Advanced Robotics, Vol. 73 (Springer, Berlin, Heidelberg 2011)

    Book  MATH  Google Scholar 

  75. A. Crétual, F. Chaumette: Visual servoing based on image motion, Int. J. Robot. Res. 20(11), 857–877 (2001)

    Article  Google Scholar 

  76. C. Collewet, E. Marchand: Photometric visual servoing, IEEE Trans. Robot. 27(4), 828–834 (2011)

    Article  Google Scholar 

  77. R. Mebarki, A. Krupa, F. Chaumette: 2D ultrasound probe complete guidance by visual servoing using image moments, IEEE Trans. Robot. 26(2), 296–306 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Chaumette .

Editor information

Editors and Affiliations

Video-References

Video-References

:

IBVS on a 6 DOF robot arm (1); available from http://handbookofrobotics.org/view-chapter/34/videodetails/59

:

IBVS on a 6 DOF robot arm (2); available from http://handbookofrobotics.org/view-chapter/34/videodetails/60

:

IBVS on a 6 DOF robot arm (3); available from http://handbookofrobotics.org/view-chapter/34/videodetails/61

:

PBVS on a 6 DOF robot arm (1); available from http://handbookofrobotics.org/view-chapter/34/videodetails/62

:

PBVS on a 6 DOF robot arm (2); available from http://handbookofrobotics.org/view-chapter/34/videodetails/63

:

2.5-D VS on a 6 DOF robot arm (1); available from http://handbookofrobotics.org/view-chapter/34/videodetails/64

:

2.5-D VS on a 6 DOF robot arm (2); available from http://handbookofrobotics.org/view-chapter/34/videodetails/65

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chaumette, F., Hutchinson, S., Corke, P. (2016). Visual Servoing. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics