Skip to main content

Motion for Manipulation Tasks

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

6-D:

six-dimensional

CF:

contact formation

DOF:

degree of freedom

GCR:

goal-contact relaxation

IK:

inverse kinematics

PC:

principal contact

PID:

proportional–integral–derivative

RCC:

remote center of compliance

SRCC:

spatial remote center compliance

References

  1. M.T. Mason: Mechanics of Robotic Manipulation (MIT Press, Cambridge 2001)

    Book  Google Scholar 

  2. H. Inoue: Force Feedback in Precise Assembly Tasks, Tech. Rep. Vol. 308 (Artificial Intelligence Laboratory, MIT, Cambridge 1974)

    Google Scholar 

  3. T. Lozano-Pérez, M. Mason, R.H. Taylor: Automatic synthesis of fine-motion strategies for robots, Int. J. Robotics Res. 31(1), 3–24 (1984)

    Article  Google Scholar 

  4. O. Khatib: A unified approach to motion and force control of robot manipulators: The operational space formulation, Int. J. Robotics Autom. 3(1), 43–53 (1987)

    Google Scholar 

  5. O. Khatib, K. Yokoi, O. Brock, K.-S. Chang, A. Casal: Robots in human environments, Arch. Control Sci. 11(3/4), 123–138 (2001)

    MATH  Google Scholar 

  6. G. Strang: Linear Algegra and Its Applications (Brooks Cole, New York 1988)

    Google Scholar 

  7. H. Seraji: An on-line approach to coordinated mobility and manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta, Vol. 1 (1993) pp. 28–35

    Google Scholar 

  8. J.M. Cameron, D.C. MacKenzie, K.R. Ward, R.C. Arkin, W.J. Book: Reactive control for mobile manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta, Vol. 3 (1993) pp. 228–235

    Google Scholar 

  9. M. Egerstedt, X. Hu: Coordinated trajectory following for mobile manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (2000)

    Google Scholar 

  10. P. Ögren, M. Egerstedt, X. Hu: Reactive mobile manipulation using dyanmic trajectory tracking, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francicso (2000) pp. 3473–3478

    Google Scholar 

  11. J. Tan, N. Xi, Y. Wang: Integrated task planning and control for mobile manipulators, Int. J. Robotics Res. 22(5), 337–354 (2003)

    Article  Google Scholar 

  12. Y. Yamamoto, X. Yun: Unified analysis on mobility and manipulability of mobile manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Detroit (1999) pp. 1200–1206

    Google Scholar 

  13. L. Sentis, O. Khatib: Control of free-floating humanoid robots through task prioritization, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Barcelona (2005)

    Google Scholar 

  14. L. Sentis, O. Khatib: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives, Int. J. Hum. Robotics 2(4), 505–518 (2005)

    Article  Google Scholar 

  15. O. Khatib: Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robotics Res. 5(1), 90–98 (1986)

    Article  Google Scholar 

  16. M. Huber, R.A. Grupen: A feedback control structure for on-line learning tasks, Robotics Auton. Syst. 22(3-4), 303–315 (1997)

    Article  Google Scholar 

  17. R. Alami, J.P. Laumond, T. Siméon: Two manipulation planning algorithms, Proc. Workshop Algorithm. Found. Robotics (1994)

    Google Scholar 

  18. S.M. LaValle: Planning Algorithms (Cambridge Univ., Cambridge 2006)

    Book  MATH  Google Scholar 

  19. R. Grossman, A. Nerode, A. Ravn, H. Rischel (Eds.): Hybrid Systems (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  20. J.M. Ahuactzin, K. Gupta, E. Mazer: Manipulation planning for redundant robots: A practical approach, Int. J. Robotics Res. 17(7), 731–747 (1998)

    Article  Google Scholar 

  21. Y. Koga: On Computing Multi-Arm Manipulation Trajectories, Ph.D. Thesis (Stanford University, Stanford 1995)

    Google Scholar 

  22. D. Bertram, J.J. Kuffner, T. Asfour, R. Dillman: A unified approach to inverse kinematics and path planning for redundant manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1874–1879

    Google Scholar 

  23. D. Trivedi, C.D. Rahn, W.M. Kier, I.D. Walker: Soft robotics: Biological inspiration, state of the art, and future research, Appl. Bionics Biomech. 5(3), 99–117 (2008)

    Article  Google Scholar 

  24. B.A. Jones, I.D. Walker: Kinematics for multisection continuum robots, IEEE Trans. Robotics 22(1), 43–55 (2006)

    Article  Google Scholar 

  25. S. Neppalli, M.A. Csencsits, B.A. Jones, I. Walker: A geometrical approach to inverse kinematics for continuum manipulators, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 3565–3570

    Google Scholar 

  26. J. Li, J. Xiao: Determining grasping configurations for a spatial continuum manipulator, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 4207–4214

    Google Scholar 

  27. J. Xiao, R. Vatcha: Real-time adaptive motion planning for a continuum manipulator, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 5919–5926

    Google Scholar 

  28. J. Li, J. Xiao: Progressive generation of force-closure grasps for an n-section continuum manipulator, Proc. IEEE Int. Conf. Robotics Auto. (ICRA) (2013) pp. 4016–4022

    Google Scholar 

  29. J. Li, J. Xiao: Progressive, continuum grasping in cluttered space, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 4563–4568

    Google Scholar 

  30. G.S. Chirikjian, J.W. Burdick: Kinematically optimal hyperredundant manipulator configurations, IEEE Trans. Robotics Autom. 11(6), 794–798 (1995)

    Article  Google Scholar 

  31. G. Boothroyd: Assembly Automation and Product Design, 2nd edn. (Taylor Francis, Boca Raton 2005)

    Book  Google Scholar 

  32. D. Whitney, O.L. Gilbert, M. Jastrzebski: Representation of geometric variations using matrix transforms for statistical tolerance analysis in assemblies, Res. Eng. Des. 64, 191–210 (1994)

    Article  Google Scholar 

  33. P. Jimenez: Survey on assembly sequencing: A combinatorial and geometrical perspective, J. Intell. Manuf. l24, 235–250 (2013)

    Article  Google Scholar 

  34. B. Shirinzadeh: Issues in the design of the reconfigurable fixture modules for robotic assembly, J. Manuf. Syst. 121, 1–14 (1993)

    Article  Google Scholar 

  35. T. Lozano-Pérez: Spatial planning: A configuration space approach, IEEE Trans. Comput. C-32(2), 108–120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Desai: On Fine Motion in Mechanical Assembly in Presence of Uncertainty, Ph.D. Thesis (University of Michigan, Ann Arbor 1989)

    Google Scholar 

  37. J. Xiao: Automatic determination of topological contacts in the presence of sensing uncertainties, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 65–70

    Google Scholar 

  38. J. Xiao, X. Ji: On automatic generation of high-level contact state space, Int. J. Robotics Res. 20(7), 584–606 (2001)

    Article  Google Scholar 

  39. S.N. Simunovic: Force information in assembly processes, Proc. 5th Int. Symp. Ind. Robots (1975) pp. 415–431

    Google Scholar 

  40. S.H. Drake: Using Compliance in Lieu of Sensory Feedback for Automatic Assembly, Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge 1989)

    Google Scholar 

  41. D.E. Whitney: Quasi-static assembly of compliantly supported rigid parts, ASME J. Dyn. Syst. Meas. Control 104, 65–77 (1982)

    Article  MATH  Google Scholar 

  42. R.L. Hollis: A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: Design, modeling, and control, IEEE Trans. Robotics Autom. 7(3), 320–332 (1991)

    Article  MathSciNet  Google Scholar 

  43. S. Joo, F. Miyazaki: Development of variable RCC and ITS application, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Victoria, Vol. 3 (1998) pp. 1326–1332

    Google Scholar 

  44. H. Kazerooni: Direct-drive active compliant end effector (active RCC), IEEE J. Robotics Autom. 4(3), 324–333 (1988)

    Article  Google Scholar 

  45. R.H. Sturges, S. Laowattana: Fine motion planning through constraint network analysis, Proc. Int. Symp. Assem. Task Plan. (1995) pp. 160–170

    Google Scholar 

  46. D.E. Whitney: Historic perspective and state of the art in robot force control, Int. J. Robotics Res. 6(1), 3–14 (1987)

    Article  Google Scholar 

  47. M. Peshkin: Programmed compliance for error corrective assembly, IEEE Trans. Robotics Autom. 6(4), 473–482 (1990)

    Article  Google Scholar 

  48. J.M. Schimmels, M.A. Peshkin: Admittance matrix design for force-guided assembly, IEEE Trans. Robotics Autom. 8(2), 213–227 (1992)

    Article  Google Scholar 

  49. J.M. Schimmels: A linear space of admittance control laws that guarantees force assembly with friction, IEEE Trans. Robotics Autom. 13(5), 656–667 (1997)

    Article  Google Scholar 

  50. S. Hirai, T. Inatsugi, K. Iwata: Learning of admittance matrix elements for manipulative operations, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1996) pp. 763–768

    Google Scholar 

  51. S. Lee, H. Asada: A perturbation/correlation method for force guided robot assembly, IEEE Trans. Robotics Autom. 15(4), 764–773 (1999)

    Article  Google Scholar 

  52. H. Asada: Representation and learning of nonlinear compliance using neural nets, IEEE Trans. Robotics Autom. 9(6), 863–867 (1993)

    Article  Google Scholar 

  53. J. Simons, H. Van Brussel, J. De Schutter, J. Verhaert: A self-learning automaton with variable resolution for high precision assembly by industrial robots, IEEE Trans. Autom. Control 27(5), 1109–1113 (1982)

    Article  MATH  Google Scholar 

  54. V. Gullapalli, J.A. Franklin, H. Benbrahim: Acquiring robot skills via reinforcement learning, IEEE Control Syst. 14(1), 13–24 (1994)

    Article  Google Scholar 

  55. Q. Wang, J. De Schutter, W. Witvrouw, S. Graves: Derivation of compliant motion programs based on human demonstration, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 2616–2621

    Chapter  Google Scholar 

  56. R. Cortesao, R. Koeppe, U. Nunes, G. Hirzinger: Data fusion for robotic assembly tasks based on human skills, IEEE Trans. Robotics Autom. 20(6), 941–952 (2004)

    Article  Google Scholar 

  57. K. Ikeuchi, T. Suehiro: Toward an assembly plan from observation. Part I: Task recognition with polyhedral objects, IEEE Trans. Robotics Autom. 10(3), 368–385 (1994)

    Article  Google Scholar 

  58. H. Onda, H. Hirokawa, F. Tomita, T. Suehiro, K. Takase: Assembly motion teaching system using position/forcesimulator-generating control program, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1997) pp. 938–945

    Google Scholar 

  59. H. Onda, T. Suehiro, K. Kitagaki: Teaching by demonstration of assembly motion in VR – non-deterministic search-type motion in the teaching stage, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2002) pp. 3066–3072

    Google Scholar 

  60. Y. Kobari, T. Nammoto, J. Kinugawa, K. Kosuge: Vision based compliant motion control for part assembly, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 293–298

    Google Scholar 

  61. T. Lozano-Pérez, M.T. Mason, R.H. Taylor: Automatic synthesis of fine-motion strategies for robot, Int. J. Robotics Res. 31(1), 3–24 (1984)

    Article  Google Scholar 

  62. B.R. Donald: Error Detection and Recovery in Robotics (Springer, Berlin, Heidelberg 1989)

    MATH  Google Scholar 

  63. J. Canny: On computability of fine motion plans, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 177–182

    Google Scholar 

  64. M. Erdmann: Using backprojections for fine motion planning with uncertainty, Int. J. Robotics Res. 5(1), 19–45 (1986)

    Article  Google Scholar 

  65. J.C. Latombe: Robot Motion Planning (Kluwer, Dordrecht 1991)

    Book  MATH  Google Scholar 

  66. B. Dufay, J.C. Latombe: An approach to automatic programming based on inductive learning, Int. J. Robotics Res. 3(4), 3–20 (1984)

    Article  Google Scholar 

  67. H. Asada, S. Hirai: Towards a symbolic-level force feedback: Recognition of assembly process states, Proc. Int. Symp. Robotics Res. (1989) pp. 290–295

    Google Scholar 

  68. J. Xiao, R. Volz: On replanning for assembly tasks using robots in the presence of uncertainties, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 638–645

    Google Scholar 

  69. J. Xiao: Replanning with compliant rotations in the presence of uncertainties, Proc. Int. Symp. Intell. Control, Glasgow (1992) pp. 102–107

    Google Scholar 

  70. G. Dakin, R. Popplestone: Simplified fine-motion planning in generalized contact space, Proc. Int. Symp. Intell. Control (1992) pp. 281–287

    Google Scholar 

  71. G. Dakin, R. Popplestone: Contact space analysis for narrow-clearance assemblies, Proc. Int. Symp. Intell. Control (1993) pp. 542–547

    Google Scholar 

  72. J. Rosell, L. Basañez, R. Suárez: Compliant-motion planning and execution for robotic assembly, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 2774–2779

    Google Scholar 

  73. R. Taylor: The Synthesis of Manipulator Control Programs from Task-Level Specifications, Ph.D. Thesis (Stanford University, Stanford 1976)

    Google Scholar 

  74. R.A. Brooks: Symbolic error analysis and robot planning, Int. J. Robotics Res. 1(4), 29–68 (1982)

    Article  Google Scholar 

  75. R.A. Smith, P. Cheeseman: On the representation and estimation of spatial uncertaity, Int. J. Robotics Res. 5(4), 56–68 (1986)

    Article  Google Scholar 

  76. S.-F. Su, C. Lee: Manipulation and propagation of uncertainty and verification of applicability of actions in assembly tasks, IEEE Trans. Syst. Man Cybern. 22(6), 1376–1389 (1992)

    Article  MATH  Google Scholar 

  77. S.-F. Su, C. Lee, W. Hsu: Automatic generation of goal regions for assembly tasks in the presence of uncertainty, IEEE Trans. Robotics Autom. 12(2), 313–323 (1996)

    Article  Google Scholar 

  78. J. Hopcroft, G. Wilfong: Motion of objects in contact, Int. J. Robotics Res. 4(4), 32–46 (1986)

    Article  Google Scholar 

  79. F. Avnaim, J.D. Boissonnat, B. Faverjon: A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1988) pp. 1656–1661

    Google Scholar 

  80. R. Brost: Computing metric and topological properties of c-space obstacles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 170–176

    Google Scholar 

  81. B. Donald: A search algorithm for motion planning with six degrees of freedom, Artif. Intell. 31(3), 295–353 (1987)

    Article  MATH  Google Scholar 

  82. L. Joskowicz, R.H. Taylor: Interference-free insertion of a solid body into a cavity: An algorithm and a medical application, Int. J. Robotics Res. 15(3), 211–229 (1996)

    Article  Google Scholar 

  83. H. Hirukawa: On motion planning of polyhedra in contact, Proc. Workshop Algorithm. Found. Robotics, Toulouse (1996) pp. 381–391

    Google Scholar 

  84. S.J. Buckley: Planning compliant motion strategies, Proc. Int. Symp. Intell. Control (1988) pp. 338–343

    Google Scholar 

  85. E. Sacks: Path planning for planar articulated robots using configuration spaces and compliant motion, IEEE Trans. Robotics Autom. 19(3), 381–390 (2003)

    Article  Google Scholar 

  86. C. Laugier: Planning fine motion strategies by reasoning in the contact space, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 653–659

    Google Scholar 

  87. B.J. McCarragher, H. Asada: A discrete event approach to the control of robotic assembly tasks, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1993) pp. 331–336

    Google Scholar 

  88. B.J. McCarragher, H. Asada: The discrete event modeling and trajectory planning of robotic assembly tasks, ASME J. Dyn. Syst. Meas. Control 117, 394–400 (1995)

    Article  MATH  Google Scholar 

  89. R. Suárez, L. Basañez, J. Rosell: Using configuration and force sensing in assembly task planning and execution, Proc. Int. Symp. Assem. Task Plan. (1995) pp. 273–279

    Google Scholar 

  90. H. Hirukawa, Y. Papegay, T. Matsui: A motion planning algorithm for convex polyhedra in contact under translation and rotation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Diego (1994) pp. 3020–3027

    Google Scholar 

  91. X. Ji, J. Xiao: Planning motion compliant to complex contact states, Int. J. Robotics Res. 20(6), 446–465 (2001)

    Article  Google Scholar 

  92. L.E. Kavraki, P. Svestka, J.C. Latombe, M. Overmars: Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robotics Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  93. B. Hannaford, P. Lee: Hidden Markov model analysis of force/torque information in telemanipulation, Int. J. Robotics Res. 10(5), 528–539 (1991)

    Article  Google Scholar 

  94. G.E. Hovland, B.J. McCarragher: Hidden Markov models as a process monitor in robotic assembly, Int. J. Robotics Res. 17(2), 153–168 (1998)

    Article  Google Scholar 

  95. T. Takahashi, H. Ogata, S. Muto: A method for analyzing human assembly operations for use in automatically generating robot commands, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2, Atlanta (1993) pp. 695–700

    Google Scholar 

  96. P. Sikka, B.J. McCarragher: Rule-based contact monitoring using examples obtained by task demonstration, Proc. 15th Int. Jt. Conf. Artif. Intell., Nagoya (1997) pp. 514–521

    Google Scholar 

  97. E. Cervera, A. Del Pobil, E. Marta, M. Serna: Perception-based learning for motion in contact in task planning, J. Intell. Robots Syst. 17(3), 283–308 (1996)

    Article  Google Scholar 

  98. L.M. Brignone, M. Howarth: A geometrically validated approach to autonomous robotic assembly, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Lausanne (2002) pp. 1626–1631

    Google Scholar 

  99. M. Nuttin, J. Rosell, R. Suárez, H. Van Brussel, L. Basañez, J. Hao: Learning approaches to contact estimation in assembly tasks with robots, Proc. 3rd Eur. Workshop Learn. Robotics, Heraklion (1995)

    Google Scholar 

  100. L.J. Everett, R. Ravari, R.A. Volz, M. Skubic: Generalized recognition of single-ended contact formations, IEEE Trans. Robotics Autom. 15(5), 829–836 (1999)

    Article  Google Scholar 

  101. M. Skubic, R.A. Volz: Identifying single-ended contact formations from force sensor patterns, IEEE Trans. Robotics Autom. 16(5), 597–603 (2000)

    Article  Google Scholar 

  102. S. Hirai, H. Asada: Kinematics and statics of manipulation using the theory of polyhedral convex cones, Int. J. Robotics Res. 12(5), 434–447 (1993)

    Article  Google Scholar 

  103. H. Hirukawa, T. Matsui, K. Takase: Automatic determination of possible velocity and applicable force of frictionless objects in contact from a geometric model, IEEE Trans. Robotics Autom. 10(3), 309–322 (1994)

    Article  Google Scholar 

  104. B.J. McCarragher, H. Asada: Qualitative template matching using dynamic process models for state transition recognition of robotic assembly, ASME J. Dyn. Syst. Meas. Control 115(2), 261–269 (1993)

    Article  Google Scholar 

  105. T.M. Schulteis, P.E. Dupont, P.A. Millman, R.D. Howe: Automatic identification of remote environments, Proc. ASME Dyn. Syst. Control Div., Atlanta (1996) pp. 451–458

    Google Scholar 

  106. A.O. Farahat, B.S. Graves, J.C. Trinkle: Identifying contact formations in the presence of uncertainty, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Pittsburg (1995) pp. 59–64

    Google Scholar 

  107. J. Xiao, L. Zhang: Contact constraint analysis and determination of geometrically valid contact formations from possible contact primitives, IEEE Trans. Robotics Autom. 13(3), 456–466 (1997)

    Article  Google Scholar 

  108. H. Mosemann, T. Bierwirth, F.M. Wahl, S. Stoeter: Generating polyhedral convex cones from contact graphs for the identification of assembly process states, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 744–749

    Google Scholar 

  109. J. Xiao, L. Zhang: Towards obtaining all possible contacts – Growing a polyhedron by its location uncertainty, IEEE Trans. Robotics Autom. 12(4), 553–565 (1996)

    Article  Google Scholar 

  110. M. Spreng: A probabilistic method to analyze ambiguous contact situations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 543–548

    Google Scholar 

  111. N. Mimura, Y. Funahashi: Parameter identification of contact conditions by active force sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Diego (1994) pp. 2645–2650

    Google Scholar 

  112. B. Eberman: A model-based approach to Cartesian manipulation contact sensing, Int. J. Robotics Res. 16(4), 508–528 (1997)

    Article  Google Scholar 

  113. T. Debus, P. Dupont, R. Howe: Contact state estimation using multiple model estimation and Hidden Markov model, Int. J. Robotics Res. 23(4-5), 399–413 (2004)

    Article  Google Scholar 

  114. J. De Geeter, H. Van Brussel, J. De Schutter, M. Decréton: Recognizing and locating objects with local sensors, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Minneapolis (1996) pp. 3478–3483

    Google Scholar 

  115. J. De Schutter, H. Bruyninckx, S. Dutré, J. De Geeter, J. Katupitiya, S. Demey, T. Lefebvre: Estimating first-order geometric parameters and monitoring contact transitions during force-controlled compliant motions, Int. J. Robotics Res. 18(12), 1161–1184 (1999)

    Article  Google Scholar 

  116. T. Lefebvre, H. Bruyninckx, J. De Schutter: Polyhedral contact formation identification for autonomous compliant motion: Exact nonlinear bayesian filtering, IEEE Trans. Robotics 21(1), 124–129 (2005)

    Article  Google Scholar 

  117. T. Lefebvre, H. Bruyninckx, J. De Schutter: Online statistical model recognition and state estimation for autonomous compliant motion systems, IEEE Trans. Syst. Man Cybern. C 35(1), 16–29 (2005)

    Article  Google Scholar 

  118. K. Gadeyne, T. Lefebvre, H. Bruyninckx: Bayesian hybrid model-state estimation applied to simultaneous contact formation recognition and geometrical parameter estimation, Int. J. Robotics Res. 24(8), 615–630 (2005)

    Article  Google Scholar 

  119. K. Kitagaki, T. Ogasawara, T. Suehiro: Methods to detect contact state by force sensing in an edge mating task, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 701–706

    Google Scholar 

  120. T. Lefebvre, H. Bruyninckx, J. De Schutter: Task planning with active sensing for autonomous compliant motion, Int. J. Robotics Res. 24(1), 61–82 (2005)

    Article  Google Scholar 

  121. T. Debus, P. Dupont, R. Howe: Distinguishability and identifiability testing of contact state models, Adv. Robotics 19(5), 545–566 (2005)

    Article  Google Scholar 

  122. W. Meeussen, J. Xiao, J. De Schutter, H. Bruyninckx, E. Staffetti: Automatic verification of contact states taking into account manipulator constraints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 3583–3588

    Google Scholar 

  123. N.S. Bedrossian: Classification of singular configurations for redundant manipulators, Proc. 1990 IEEE Int. Conf. Robotics Autom. (ICRA), Cincinnati (1990) pp. 818–823

    Google Scholar 

  124. F.-T. Cheng, T.-L. Hour, Y.-Y. Sun, T.-H. Chen: Study and resolution of singularities for a 6-DOF PUMA manipulator, IEEE Trans. Syst. Man Cybern. B 27(2), 332–343 (1997)

    Article  Google Scholar 

  125. A. Sarić, J. Xiao, J. Shi: Robotic surface assembly via contact state transitions, Proc. IEEE Int. Conf. Autom. Sci. Eng. (CASE) (2013) pp. 954–959

    Google Scholar 

  126. J. Park, R. Cortesao, O. Khatib: Multi-contact compliant motion control for robotic manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), New Orleans (2004) pp. 4789–4794

    Google Scholar 

  127. W. Meeussen, E. Staffetti, H. Bruyninckx, J. Xiao, J. De Schutter: Integration of planning and execution in force controlled compliant motion, J. Robotics Auton. Syst. 56(5), 437–450 (2008)

    Article  Google Scholar 

  128. A. Stolt, M. Linderoth, A. Robertsson, R. Johansson: Force controlled robotic assembly without a force sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Minneapolis (2012) pp. 1538–1543

    Google Scholar 

  129. S. Tachi, T. Sakaki, H. Arai, S. Nishizawa, J.F. Pelaez-Polo: Impedance control of a direct-drive manipulator without using force sensors, Adv. Robotics 5(2), 183–205 (1990)

    Article  Google Scholar 

  130. M. Van Damme, B. Beyl, V. Vanderborght, V. Grosu, R. Van Ham, I. Vanderniepen, A. Matthys, D. Lefeber: Estimating robot end-effector force from noisy actuator torque measurements, Proc. Int. Conf. Robotics Autom. (ICRA), Shanghai (2011) pp. 1108–1113

    Google Scholar 

  131. D.E. Koditschek: Exact robot navigation by means of potential functions: Some topological considerations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 1–6

    Google Scholar 

  132. E. Rimon, D.E. Koditschek: Exact robot navigation using artificial potential fields, IEEE Trans. Robotics Autom. 8(5), 501–518 (1992)

    Article  Google Scholar 

  133. E. Rimon, D.E. Koditschek: The construction of analytic diffeomorphisms for exact robot navigation on star worlds, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Scottsdale (1989) pp. 21–26

    Google Scholar 

  134. J. Barraquand, J.-C. Latombe: Robot motion planning: A distributed representation approach, Int. J. Robotics Res. 10(6), 628–649 (1991)

    Article  Google Scholar 

  135. C.I. Connolly, J.B. Burns, R. Weiss: Path planning using Laplace's equation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Cincinnati (1990) pp. 2102–2106

    Google Scholar 

  136. C.I. Connolly, R.A. Grupen: One the applications of harmonic functions to robotics, J. Robotics Syst. 10(7), 931–946 (1993)

    Article  MATH  Google Scholar 

  137. S.H.J. Feder, E.J.-J. Slotine: Real-time path planning using harmonic potentials in dynamic environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Albuquerque (1997) pp. 811–874

    Google Scholar 

  138. J.-O. Kim, P. Khosla: Real-time obstacle avoidance using harmonic potential functions, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Sacramento (1991) pp. 790–796

    Google Scholar 

  139. K. Sato: Collision avoidance in multi-dimensional space using Laplace potential, Proc. 15th Conf. Robotics Soc. Jpn. (1987) pp. 155–156

    Google Scholar 

  140. S.M. LaValle, P. Konkimalla: Algorithms for computing numerical optimal feedback motion strategies, Int. J. Robotics Res. 20(9), 729–752 (2001)

    Article  Google Scholar 

  141. A. van der Schaft, H. Schumacher: An Introduction to Hybrid Dynamical Systems (Springer, Belin, Heidelberg 2000)

    Book  MATH  Google Scholar 

  142. W. Choi, J.-C. Latombe: A reactive architecture for planning and executing robot motions with incomplete knowledge, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 1, Osaka (1991) pp. 24–29

    Google Scholar 

  143. D.C. Conner, H. Choset, A.A. Rizzi: Integrated planning and control for convex-bodied nonholonomic systems using local feedback control policies, Proc. Robotics Sci. Syst., Philadelphia (2006)

    Google Scholar 

  144. D.C. Conner, A.A. Rizzi, H. Choset: Composition of local potential functions for global robot control and navigation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Las Vegas (2003) pp. 3546–3551

    Google Scholar 

  145. S.R. Lindemann, S.M. LaValle: Smooth feedback for car-like vehicles in polygonal environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Rome (2007)

    Google Scholar 

  146. L. Yang, S.M. LaValle: The sampling-based neighborhood graph: A framework for planning and executing feedback motion strategies, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Taipei (2003)

    Google Scholar 

  147. C. Belta, V. Isler, G.J. Pappas: Discrete abstractions for robot motion planning and control in polygonal environments, IEEE Trans. Robotics Autom. 21(5), 864–871 (2005)

    Article  Google Scholar 

  148. R.R. Burridge, A.A. Rizzi, D.E. Koditschek: Sequential composition of dynamically dexterous robot behaviors, Int. J. Robotics Res. 18(6), 534–555 (1999)

    Article  Google Scholar 

  149. S.R. Lindemann, S.M. LaValle: Computing smooth feedback plans over cylindrical algebraic decompositions, Proc. Robotics Sci. Syst. (RSS), Philadephia (2006)

    Google Scholar 

  150. Y. Yang, O. Brock: Elastic roadmaps: Globally task-consitent motion for autonomous mobile manipulation, Proc. Robotics Sci. Syst. (RSS), Philadephia (2006)

    Google Scholar 

  151. S. Quinlan, O. Khatib: Elastic bands: Connecting path planning and control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2, Atlanta (1993) pp. 802–807

    Google Scholar 

  152. M. Khatib, H. Jaouni, R. Chatila, J.-P. Laumond: How to implement dynamic paths, Proc. Int. Symp. Exp. Robotics (1997) pp. 225–236, Preprints

    Google Scholar 

  153. O. Brock, O. Khatib: Elastic strips: A framework for motion generation in human environments, Int. J. Robotics Res. 21(12), 1031–1052 (2002)

    Article  Google Scholar 

  154. M.H. Raibert, J.J. Craig: Hybrid position/force control of manipulators, J. Dyn. Syst. Meas. Control 103(2), 126–133 (1981)

    Article  Google Scholar 

  155. R. Featherstone, S. Sonck, O. Khatib: A general contact model for dynamically-decoupled force/motion control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Detroit (1999) pp. 3281–3286

    Google Scholar 

  156. J. Park, O. Khatib: Multi-link multi-contact force control for manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Barcelona (2005)

    Google Scholar 

  157. D.C. Ruspini, O. Khatib: A framework for multi-contact multi-body dynamic simulation and haptic display, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Takamatsu (2000) pp. 1322–1327

    Google Scholar 

  158. K.-S. Chang, R. Holmberg, O. Khatib: The augmented object model: Cooperative manipluation and parallel mechanism dynamics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (2000) pp. 470–475

    Google Scholar 

  159. O. Khatib: Object Manipulation in a multi-effector robot system. In: Robotics Research 4, ed. by R. Bolles, B. Roth (MIT Press, Cambridge 1988) pp. 137–144

    Google Scholar 

  160. D. Williams, O. Khatib: The virtual linkage: A model for internal forces in multi-grasp manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1, Altanta (1993) pp. 1030–1035

    Google Scholar 

  161. J.A. Adams, R. Bajcsy, J. Kosecka, V. Kuma, R. Mandelbaum, M. Mintz, R. Paul, C. Wang, Y. Yamamoto, X. Yun: Cooperative material handling by human and robotic agents: Module development and system synthesis, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Pittsburgh (1995) pp. 200–205

    Google Scholar 

  162. S. Hayati: Hybrid postiion/force control of multi-arm cooperating robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (1986) pp. 82–89

    Google Scholar 

  163. D. Jung, G. Cheng, A. Zelinsky: Experiments in realizing cooperation between autonomous mobile robots, Proc. Int. Symp. Exp. Robotics (1997) pp. 513–524

    Google Scholar 

  164. T.-J. Tarn, A.K. Bejczy, X. Yun: Design of dynamic control of two cooperating robot arms: Closed chain formulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 7–13

    Google Scholar 

  165. M. Uchiyama, P. Dauchez: A symmetric hybrid position/force control scheme for the coordination of two robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Philadelphia (1988) pp. 350–356

    Google Scholar 

  166. X. Yun, V.R. Kumar: An approach to simultaneious control fo trajecotry and integraction forces in dual-arm configurations, IEEE Trans. Robotics Autom. 7(5), 618–625 (1991)

    Article  Google Scholar 

  167. Y.F. Zheng, J.Y.S. Luh: Joint torques for control of two coordinated moving robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (1986) pp. 1375–1380

    Google Scholar 

  168. T. Bretl, Z. McCarthy: Quasi-static manipulation of a Kirchhoff elastic rod based on a geometric analysis of equilibrium configurations, Int. J. Robotics Res. 33(1), 48–68 (2014)

    Article  Google Scholar 

  169. J. Russakow, O. Khatib, S.M. Rock: Extended operational space formation for serial-to-parallel chain (branching) manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1, Nagoya (1995) pp. 1056–1061

    Google Scholar 

  170. K.-S. Chang, O. Khatib: Operational space dynamics: Efficient algorithms for modelling and control of branching mechanisms, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (2000) pp. 850–856

    Google Scholar 

  171. K. Kreutz-Delgado, A. Jain, G. Rodriguez: Recursive formulation of operational space control, Int. J. Robotics Res. 11(4), 320–328 (1992)

    Article  Google Scholar 

  172. M. Hutter, H. Sommer, C. Gehring, M. Hoepflinger, M. Bloesch, R. Siegwart: Quadrupedal locomotion using hierarchical operational space control, Int. J. Robotics Res. 33(8), 1047–1062 (2014)

    Article  Google Scholar 

  173. B. Bayle, J.-Y. Fourquet, M. Renaud: A coordination strategy for mobile manipulation, Proc. Int. Conf. Intell. Auton. Syst., Venice (2000) pp. 981–988

    Google Scholar 

  174. B. Bayle, J.-Y. Fourquet, M. Renaud: Generalized path generation for a mobile manipulator, Proc. Int. Conf. Mech. Des. Prod., Cairo (2000) pp. 57–66

    Google Scholar 

  175. B. Bayle, J.-Y. Fourquet, M. Renaud: Using manipulability with nonholonomic mobile manipulators, Proc. Int. Conf. Field Serv. Robotics, Helsinki (2001) pp. 343–348

    Google Scholar 

  176. J. Peters, S. Schaal: Reinforcement learning for operational space control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Rome (2007)

    Google Scholar 

  177. T. Simeon, J. Cortes, A. Sahbani, J.P. Laumond: A manipulation planner for pick and place operations under continuous grasps and placements, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)

    Google Scholar 

  178. A. Miller, P. Allen: Examples of 3D grasp quality computations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (1999)

    Google Scholar 

  179. A.T. Miller: Graspit: A Versatile Simulator for Robotic Grasping, Ph.D. Thesis (New York, Columbia University 2001)

    Google Scholar 

  180. G. Wilfong: Motion panning in the presence of movable obstacles, Proc. ACM Symp. Comput. Geom. (1988) pp. 279–288

    Google Scholar 

  181. M. Erdmann, T. Lozano-Perez: On multiple moving objects, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (1986) pp. 1419–1424

    Google Scholar 

  182. P.C. Chen, Y.K. Hwang: Pracitcal path planning among movable obstacles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1991) pp. 444–449

    Google Scholar 

  183. M. Stilman, J.J. Kuffner: Navigation among movable obstacles: Real-time reasoning in complex environments, Int. J. Hum. Robotics 2(4), 1–24 (2005)

    Google Scholar 

  184. M. Stilman, J.-U. Shamburek, J.J. Kuffner, T. Asfour: Manipulation planning among movable obstacles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007)

    Google Scholar 

  185. D. Nieuwenhuisen, A.F. van der Stappen, M.H. Overmars: An effective framework for path planning amidst movable obstacles, Proc. Workshop Algorithm. Found. Robotics (2006)

    Google Scholar 

  186. K.M. Lynch, M.T. Mason: Stable pushing: Mechanics, controllability, and planning, Int. J. Robotics Res. 15(6), 533–556 (1996)

    Article  Google Scholar 

  187. P. Tang, J. Xiao: Generation of point-contact state space between strictly curved objects. In: Robotics Science and Systems II, ed. by G.S. Sukhatme, S. Schaal, W. Burgard, D. Fox (MIT Press, Cambridge 2007) pp. 239–246

    Google Scholar 

  188. H. Nakagaki, K. Kitagaki, T. Ogasawara, H. Tsukune: Study of deformation and insertion tasks of a flexible wire, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1997) pp. 2397–2402

    Google Scholar 

  189. W. Kraus Jr., B.J. McCarragher: Case studies in the manipulation of flexible parts using a hybrid position/force approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1997) pp. 367–372

    Google Scholar 

  190. J.Y. Kim, D.J. Kang, H.S. Cho: A flexible parts assembly algorithm based on a visual sensing system, Proc. Int. Symp. Assem. Task Plan. (2001) pp. 417–422

    Google Scholar 

  191. B.J. Unger, A. Nocolaidis, P.J. Berkelman, A. Thompson, R.L. Klatzky, R.L. Hollis: Comparison of 3-D haptic peg-in-hole tasks in real and virtual environments, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001) pp. 1751–1756

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Kuffner .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Reducing uncertainty in robotics surface assembly tasks available from http://handbookofrobotics.org/view-chapter/36/videodetails/356

:

Autonomous continuum grasping available from http://handbookofrobotics.org/view-chapter/36/videodetails/357

:

Robotic assembly of emergency stop buttons available from http://handbookofrobotics.org/view-chapter/36/videodetails/358

:

Meso-scale manipulation: System, modeling, planning and control available from http://handbookofrobotics.org/view-chapter/36/videodetails/359

:

Grasp and multi-fingers-3 cylindrical-peg-in-hole demonstration using manipulation primitives available from http://handbookofrobotics.org/view-chapter/36/videodetails/360

:

Demonstration of multi-sensor integration in industrial manipulation available from http://handbookofrobotics.org/view-chapter/36/videodetails/361

:

Control pre-imaging for multifingered grasp synthesis available from http://handbookofrobotics.org/view-chapter/36/videodetails/363

:

Robust and fast manipulation of objects with multi-fingered hands available from http://handbookofrobotics.org/view-chapter/36/videodetails/364

:

Whole quadruped manipulation available from http://handbookofrobotics.org/view-chapter/36/videodetails/366

:

The mobipulator available from http://handbookofrobotics.org/view-chapter/36/videodetails/367

:

Handling of a single object by multiple mobile robots based on caster-like dynamics available from http://handbookofrobotics.org/view-chapter/36/videodetails/368

:

Rollin’ Justin – Mobile platform with variable base available from http://handbookofrobotics.org/view-chapter/36/videodetails/369

:

Learning to place new objects available from http://handbookofrobotics.org/view-chapter/36/videodetails/370

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuffner, J., Xiao, J. (2016). Motion for Manipulation Tasks. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics