Abstract
In this chapter we describe popular ways to represent the environment of a mobile robot. For indoor environments, which are often stored using two-dimensional representations, we discuss occupancy grids, line maps, topological maps, and landmark-based representations. Each of these techniques has its own advantages and disadvantages. Whilst occupancy grid maps allow for quick access and can efficiently be updated, line maps are more compact. Also landmark-based maps can efficiently be updated and maintained, however, they do not readily support navigation tasks such as path planning like topological representations do.
Additionally, we discuss approaches suited for outdoor terrain modeling. In outdoor environments, the flat-surface assumption underling many mapping techniques for indoor environments is no longer valid. A very popular approach in this context are elevation and variants maps, which store the surface of the terrain over a regularly spaced grid. Alternatives to such maps are point clouds, meshes, or three-dimensional grids, which provide a greater flexibility but have higher storage demands.

Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 2-D:
-
two-dimensional
- 2.5-D:
-
two-and-a-half-dimensional
- 3-D:
-
three-dimensional
- EKF:
-
extended Kalman filter
- EM:
-
expectation maximization
- SLAM:
-
simultaneous localization and mapping
References
H.P. Moravec, A.E. Elfes: High resolution maps from wide angle sonar, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1985)
H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, S. Thrun: Principles of Robot Motion: Theory, Algorithms and Implementation (MIT Press, Cambridge 2005)
D.H. Douglas, T.K. Peucker: Algorithms for the reduction of the number of points required to represent a line or its caricature, Cdn. Cartogr. 10(2), 112–122 (1973)
D. Sack, W. Burgard: A comparison of methods for line extraction from range data, Proc. IFAC Symp. Intell. Auton. Veh. (IAV) (2004)
P. Beeson, N.K. Jong, B. Kuipers: Towards autonomous topological place detection using the extended Voronoi graph, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)
M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit: FastSLAM: A factored solution to the simultaneous localization and mapping problem, Proc. Nat. Conf. Artif. Intell. (AAAI) (2002)
B.J. Kuipers, Y.-T. Byun: A robust qualitative method for spatial learning in unknown environments, Proc. Nat. Conf. Artif. Intell. (AAAI) (1988)
H. Choset, K. Nagatani: Topological simultaneous localization and mapping (SLAM): Toward exact localization without explicit localization, IEEE Trans. Robotics Autom. 17(2), 125–137 (2001)
S. Thrun: Robotic mapping: A survey. In: Exploring Artificial Intelligence in the New Millenium, ed. by G. Lakemeyer, B. Nebel (Morgan Kaufmann, San Diego 2003)
M. Maimone, P. Leger, J. Biesiadecki: Overview of the Mars exploration rovers’ autonomous mobility and vision capabilities, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007)
S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, R. Chatila: Autonomous rover navigation on unknown terrains: functions and integration, Int. J. Robotics Res. 21(10-11), 917–942 (2002)
R. Olea: Geostatistics for Engineers and Earth Scientists (Kluwer, Boston 1999)
A. Kelly, A. Stentz, O. Amidi, M. Bode, D. Bradley, A. Diaz-Calderon, M. Happold, H. Herman, R. Mandelbaum, T. Pilarki, P. Rander, S. Thayer, N. Vallidi, R. Warner: Toward reliable off road autonomous vehicles operating in challenging environments, Int. J. Robotics Res. 25(5-6), 449–483 (2006)
I.S. Kweon, T. Kanade: High-resolution terrain map from multiple sensor data, IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 278–292 (1992)
M. Montemerlo, S. Thrun: A multi-resolution pyramid for outdoor robot terrain perception, Proc. AAAI Nat. Conf. Artif. Intel., San Jose (2004)
R. Triebel, P. Pfaff, W. Burgard: Multi-level surface maps for outdoor terrain mapping and loop closing, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2006)
C. Wellington, A. Courville, A. Stentz: A generative model of terrain for autonomous navigation in vegetation, Int. J. Robotics Res. 25(12), 1287–1304 (2006)
P. Pfaff, R. Triebel, W. Burgard: An efficient extension to elevation maps for outdoor terrain mapping and loop closing, Int. J. Robotics Res. 26(2), 217–230 (2007)
D.M. Cole, P.M. Newman: Using laser range data for 3D SLAM in outdoor environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006)
A. Nüchter, K. Lingemann, J. Hertzberg, H. Surmann: 6D SLAM – 3D mapping outdoor environments: Research articles, J. Field Robotics 24(8–9), 699–722 (2007)
J. Elseberg, D. Borrmann, A. Nüchter: Efficient processing of large 3D point clouds, Proc. 23rd Int. Symp. Infor. Commun. Autom. Technol. (ICAT) (2011)
R.B. Rusu, S. Cousins: 3D is here: Point cloud library (PCL), Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)
N. Fairfield, G. Kantor, D. Wettergreen: Real-time SLAM with octree evidence grids for exploration in underwater tunnels, J. Field Robotics 24(1), 3–21 (2007)
A. Foessel: Scene Modeling from Motion-Free Radar Sensing, Ph.D. Thesis (Carnegie Mellon Univ., Pittsburgh 2002)
K.M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, W. Burgard: OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems, Proc. ICRA Workshop Best Pract. 3D Percept. Model. Mob. Manip. (2010)
J.-F. Lalonde, N. Vandapel, M. Hebert: Data structure for efficient processing in 3-D, Proc. Robotics Sci. Syst., Vol. I (2005) p. 48
A. Hornung, K.M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard: OctoMap: An efficient probabilistic 3D mapping framework based on octrees, Auton. Robots 34(3), 189–206 (2013)
K.M. Wurm, D. Hennes, D. Holz, R.B. Rusu, C. Stachniss, K. Konolige, W. Burgard: Hierarchies of octrees for efficient 3D mapping, Proc. IEEE/RSJ Int Conf. Intell. Robots Syst. (IROS) (2011)
L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, M. Pollefeys: Autonomous obstacle avoidance and maneuvering on a vision-guided MAV using on-board processing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)
S. Oßwald, A. Hornung, M. Bennewitz: Improved proposals for highly accurate localization using range and vision data, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012)
M. Ciocarlie, K. Hsiao, E.G. Jones, S. Chitta, R.B. Rusu, I.A. Sucan: Towards reliable grasping and manipulation in household environments, Int. Symp. Exp. Robotics (ISER) (2010)
A. Hornung, M. Phillips, E.G. Jones, M. Bennewitz, M. Likhachev, S. Chitta: Navigation in three-dimensional cluttered environments for mobile manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012)
J. Leal: Stochastic Environment Representation, Ph.D. Thesis (Univ. of Sydney, Sydney 2003)
P. Heckbert, M. Garland: Optimal triangulation and quadric-based surface simplification, J. Comput. Geom. Theory Appl. 14(1-3), 49–65 (1999)
A. Akbarzadeh: Towards urban 3d reconstruction from video, Proc. Int. Symp. 3D Data Vis. Transm. (2006)
C. Frueh, S. Jain, A. Zakhor: Data processing algorithms for generating textured 3d building facade meshes from laser scans and camera images, Int. J. Comput. Vis. 61(2), 159–184 (2005)
I. Stamos, P. Allen: Geometry and texture recovery of scenes of large scales, Comput. Vis. Image Underst. 88, 94–118 (2002)
D. Gennery: Traversability analysis and path planning for a planetary rover, Auton. Robotics 6, 131–146 (1999)
D. Ferguson, A. Stentz: The delayed D* algorithm for efficient path replanning, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)
D. Ferguson, A. Stentz: Field D*: An interpolation-based path planner and replanner, Proc. Int. Symp. Robotics Res. (ISRR) (2005)
M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, S. Thrun: Anytime dynamic A*: An anytime, replanning algorithm, Proc. Int. Conf. Autom. Plan. Sched. (ICAPS) (2005)
B. Sofman, E. Lin, J. Bagnell, J. Cole, N. Vandapel, A. Stentz: Improving robot navigation through self-supervised online learning, J. Field Robotics 23(12), 1059–1075 (2006)
D. Stavens, S. Thrun: A self-supervised terrain roughness estimator for off-road autonomous driving, Uncertainty Artif. Intell., Boston (2006)
A. Angelova, L. Matthies, D. Helmick, P. Perona: Slip prediction using visual information, Robotics Sci. Syst., Philadelphia (2006)
D. Kim, J. Sun, S. Oh, J. Rehg, A. Bobick: Traversability classification using unsupervised on-line visual learning for outdoor robot navigation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006)
S. Thrun, M. Montemerlo, A. Aron: Probabilistic terrain analysis for high-speed desert driving, Robotics Sci. Syst. (2005)
R. Murrieta-Cid, C. Parra, M. Devy: Visual navigation in natural environments: From range and color data to a landmark-based model, Auton. Robotics 13(2), 143–168 (2002)
D. Asmar, J. Zelek, S. Abdallah: Tree trunks as landmarks for outdoor vision SLAM, Proc. Conf. Comp. Vis. Pattern Recogn. Workshop (2006)
I. Posner, D. Schroeter, P. Newman: Using scene similarity for place labelling, Int. Symp. Exp. Robotics (2006)
A. Torralba, K.P. Murphy, W.T. Freeman, M.A. Rubin: Context-based vision system for place and object recognition, Proc. IEEE Int. Conf. Comput. Vis. (ICCV) (2003)
D. Bradley, S. Thayer, A. Stentz, P. Rander: Vegetation Detection for Mobile Robot Navigation, Tech. Rep. CMU-RI-TR-04-12 (Carnegie Mellon Univ., Pittsburgh 2004)
S. Kumar, J. Guivant, H. Durrant-Whyte: Informative representations of unstructured environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004)
S. Kumar, F. Ramos, B. Douillard, M. Ridley, H. Durrant-Whyte: A novel visual perception framework, Proc. 9th Int. Conf. Control Autom. Robotics Vis. (ICARCV) (2006)
F. Ramos, S. Kumar, B. Upcroft, H. Durrant-Whyte: Representing natural objects in unstructured environments, NIPS Workshop Mach. Learn. Robotics (2005)
C. Pantofaru, R. Unnikrishnan, M. Hebert: Toward generating labeled maps from color and range data for robot navigation, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (2003)
D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, A. Ng: Discriminative learning of Markov random fields for segmentation of 3D scan data, Proc. Conf. Comp. Vis. Pattern Recogn. (CVPR) (2005)
R. Triebel, K. Kersting, W. Burgard: Robust 3D scan point classification using associative Markov networks, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006)
J.F. Lalonde, N. Vandapel, D. Huber, M. Hebert: Natural terrain classification using three-dimensional ladar data for ground robot mobility, J. Field Robotics 23(10), 839–861 (2006)
M. Devy, R. Chatila, P. Fillatreau, S. Lacroix, F. Nashashibi: On autonomous navigation in a natural environment, Robotics Auton. Syst. 16(1), 5–16 (1995)
R. Manduchi, A. Castano, A. Talukder, L. Matthies: Obstacle detection and terrain classification for autonomous off-road navigation, Auton. Robotics 18(1), 81–102 (2005)
D. Huber, M. Hebert: 3D modeling using a statistical sensor model and stochastic search, Proc. IEEE Conf. Comput. Vision Pattern Recogn. (CVPR) (2003) pp. 858–865
S. Balakirsky, A. Lacaze: World modeling and behavior generation for autonomous ground vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000)
A. Lacaze, K. Murphy, M. Delgiorno: Autonomous mobility for the demo III experimental unmanned vehicles, Proc. AUVSI Int. Conf. Unmanned Veh. (2002)
P. Bellutta, R. Manduchi, L. Matthies, K. Owens, A. Rankin: Terrain perception for demo III, Proc. Intell. Veh. Symp. (2000)
J.F. Lalonde, R. Unnikrishnan, N. Vandapel, M. Hebert: Scale selection for classification of point-sampled 3D surfaces, Proc. 5th Int. Conf. 3-D Digital Imaging Model. (3DIM) (2005)
J. Macedo, R. Manduchi, L. Matthies: Ladar-based discrimination of grass from obstacles for autonomous navigation, Proc. 7th Int. Symp. Exp. Robotics (ISER) (2000)
H. Chen, P. Meer, D. Tyler: Robust regression for data with multiple structures, Proc. IEEE Int. Conf. Comput. Vis. Pattern Recogn. (CVPR) (2001)
R. Unnikrishnan, M. Hebert: Robust extraction of multiple structures from non-uniformly sampled data, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2003)
D. Wolf, G. Sukhatme, D. Fox, W. Burgard: Autonomous terrain mapping and classification using hidden Markov models, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)
C. Olson, L. Matthies, J. Wright, R. Li, K. Di: Visual terrain mapping for Mars exploration, Comput. Vis. Underst. 105, 73–85 (2007)
J. Nieto, J. Guivant, E. Nebot: The hybrid metric maps (hymms): A novel map representation for denseSLAM, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004)
F. Ramos, J. Nieto, H. Durrant-Whyte: Recognising and modelling landmarks to close loops in outdoor SLAM, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007)
D. Hähnel, D. Schulz, W. Burgard: Mobile robot mapping in populated environments, Adv. Robotics 17(7), 579–598 (2003)
C.-C. Wang, C. Thorpe, S. Thrun: Online simultaneous localization and mapping with detection and tracking of moving objects: Theory and results from a ground vehicle in crowded urban areas, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003)
P. Biber, T. Duckett: Dynamic maps for long-term operation of mobile service robots, Proc. Robotics Sci. Syst. (2005)
D. Meyer-Delius, J. Hess, G. Grisetti, W. Burgard: Temporary maps for robust localization in semi-static environments, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Taipei (2010)
C. Stachniss, W. Burgard: Mobile robot mapping and localization in non-static environments, Proc. Nat. Conf. Artif. Intell. (AAAI), Pittsburgh (2005)
D. Hähnel, R. Triebel, W. Burgard, S. Thrun: Map building with mobile robots in dynamic environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003)
R. Siegwart, I. Nourbakhsh: Introduction to Autonomous Mobile Robots (MIT Press, Cambridge 2001)
S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge 2005)
H. Samet: Foundations of Multidimensional and Metric Data Structures (Elsevier, Amsterdam 2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Video-References
Video-References
-
:
-
OctoMap visualization available from http://handbookofrobotics.org/view-chapter/45/videodetails/79
-
:
-
3-D textured model of urban environments available from http://handbookofrobotics.org/view-chapter/45/videodetails/269
-
:
-
Service robot navigation in urban environments available from http://handbookofrobotics.org/view-chapter/45/videodetails/270
-
:
-
Learning navigation cost grids available from http://handbookofrobotics.org/view-chapter/45/videodetails/271
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Burgard, W., Hebert, M., Bennewitz, M. (2016). World Modeling. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-32552-1_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32550-7
Online ISBN: 978-3-319-32552-1
eBook Packages: EngineeringEngineering (R0)