Abstract
In this chapter, we introduce modeling and control for wheeled mobile robots and tracked vehicles. The target environment is rough terrains, which includes both deformable soil and heaps of rubble. Therefore, the topics are roughly divided into two categories, wheeled robots on deformable soil and tracked vehicles on heaps of rubble.
After providing an overview of this area in Sect. 50.1, a modeling method of wheeled robots on a deformable terrain is introduced in Sect. 50.2. It is based on terramechanics, which is the study focusing on the mechanical properties of natural rough terrain and its response to off-road vehicle, specifically the interaction between wheel/track and soil. In Sect. 50.3, the control of wheeled robots is introduced. A wheeled robot often experiences wheel slippage as well as its sideslip while traversing rough terrain. Therefore, the basic approach in this section is to compensate the slip via steering and driving maneuvers. In the case of navigation on heaps of rubble, tracked vehicles have much advantage. To improve traversability in such challenging environments, some tracked vehicles are equipped with subtracks, and one kinematical modeling method of tracked vehicle on rough terrain is introduced in Sect. 50.4. In addition, stability analysis of such vehicles is introduced in Sect. 50.5. Based on such kinematical model and stability analysis, a sensor-based control of tracked vehicle on rough terrain is introduced in Sect. 50.6. Sect. 50.7 summarizes this chapter.

Similar content being viewed by others
Abbreviations
- 3-D:
-
three-dimensional
- COG:
-
center of gravity
- DEM:
-
discrete element method
- DLR:
-
Deutsches Zentrum für Luft- und Raumfahrt
- DOF:
-
degree of freedom
- ESM:
-
energy stability margin
- FEM:
-
finite element method
- IMU:
-
inertial measurement unit
- JAXA:
-
Japan Aerospace Exploration Agency
- LIDAR:
-
light detection and ranging
- MIT:
-
Massachusetts Institute of Technology
- NESM:
-
normalized ESM
- PID:
-
proportional–integral–derivative
- SCM:
-
soil contact model
- SLAM:
-
simultaneous localization and mapping
- UGV:
-
unmanned ground vehicle
References
M. Jurkat, C. Nuttall, P. Haley: The AMC' 74 Mobility Model, Tech. Rep. 11921 (US Army Tank Automotive Command, Warren, 1975)
R.B. Ahlvin, P.W. Haley: NATO Reference Mobility Model Edition II, NRMM User's Guide, Tech. Rep. GL-92-19 (US Army WES, Vicksburg, 1992)
A. Gibbesch, B. Schäfer: Multibody system modelling and simulation of planetary rover mobility on soft terrain, 8th Int. Symp. Artif. Intell. Robotics Autom. Space (i-SAIRAS), Munich (2005)
R. Krenn, A. Gibbesch, G. Hirzinger: Contact dynamics simulation of rover locomotion, Proc. 9th Int. Symp. on Artif. Intell., Robotics Autom. Space, Los Angeles (2007)
D. Holz, A. Azimi, M. Teichmann, J. Kövecses: Mobility prediction of rovers on soft terrain: Effects of wheel- and tool-induced terrain deformations, Proc. 15th Int. Conf. Climbing Walk. Robots Support Technol. Mob. Mach. (CLAWAR) (2012)
J.Y. Wong: Theory of Ground Vehicles (Wiley, New York 1978)
M. Buehler, K. Iagnemma, S. Singh (Eds.): The 2005 DARPA Grand Challenge: The Great Robot Race Springer Tracts Adv. Robotics Ser, Vol. 36 (Springer, Berlin, Heidelberg 2005)
M. Buehler, K. Iagnemma, S. Singh (Eds.): The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, Springer Tracts Adv. Robotics, Vol. 56 (Springer, Berlin, Heidelberg 2009)
C. Li, T. Zhang, D.I. Goldman: A terradynamics of legged locomotion on granular media, Science 339, 1408–1412 (2013)
C. de Wit, H. Khennouf, C. Samson, O. Sordalen: Nonlinear control design for mobile robots. In: Recent Trends in Mobile Robots, World Scientific Series in Robotics and Automated System, Vol. 11, ed. by Y. Zheng (World Scientific, Singapore 1993)
A. Luca, G. Oriolo, C. Samson: Feedback control of nonholonomic car-like robots. In: Robot Motion Planning and Control, ed. by J. Laumond (Springer, Berlin, Heidelberg 1998) pp. 171–254
F. Rio, G. Jimenez, J. Sevillano, S. Vicente, A. Balcells: A generalization of path following for mobile robots, Proc. 1999 IEEE Int. Conf. Robotics Autom. (ICRA), Detroit (1999) pp. 7–12
S. Rezaei, J. Guivant, E. Nebot: Car-like robot path following in large unstructured environments, Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS) (2003) pp. 2468–2473
P. Coelho, U. Nunes: Path-following control of mobile robots in presence of uncertainties, IEEE Trans. Robotics 21(2), 252–261 (2005)
D. Helmick, Y. Cheng, D. Clouse, L. Matthies, S. Roumeliotis: Path following using visual odometry for a Mars rover in high-slip environments, Proc. 2004 IEEE Aerosp. Conf., Big Sky (2004) pp. 772–789
D. Helmick, S. Roumeliotis, Y. Cheng, D. Clouse, M. Bajracharya, L. Matthies: Slip-compensated path following for planetary exploration rovers, Adv. Robotics 20(11), 1257–1280 (2006)
G. Ishigami, K. Nagatani, K. Yoshida: Slope traversal controls for planetary exploration rover on sandy terrain, J. Field Robotics 26(3), 264–286 (2009)
D.A. Messuri, C.A. Klein: Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion, IEEE J. Robotics Autom. 1(3), 132–141 (1985)
S. Hirose, H. Tsukagoshi, K. Yoneda: Normalized energy stability margin and its contour of walking vehicles on rough terrain, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 181–186
E. Magid, T. Tsubouchi, E. Koyanagi, T. Yoshida, S. Tadokoro: Controlled balance losing in random step environment for path planning of a teleoperated crawler-type vehicle, J. Field Robotics 28(6), 932–949 (2011)
A. Jacoff, E. Messina, B.A. Weiss, S. Tadokoro, Y. Nakagawa: Test arenas and performance metrics for urban search and rescue robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Las Vegas (2003) pp. 3396–3403
K. Ohno, V. Chun, T. Yuzawa, E. Takeuchi, S. Tadokoro, T. Yoshida, E. Koyanagi: Rollover avoidance using a stability margin for a tracked vehicle with sub-tracks, IEEE Int. Workshop Saf. Sec. Rescue Robotics (2009)
N. Vandapel, D. Huber, A. Kapuria, M. Hebert: Natural terrain classification using 3-D ladar data, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 5 (2004) pp. 5117–5122
M. Onosato, S. Yamamoto, M. Kawajiri, F. Tanaka: Digital gareki archives: An approach to know more about collapsed houses for supporting search and rescue activities, IEEE Int. Symp. Saf. Secur. Rescue Robotics (SSRR) (2012) pp. 1–6
A. Lacaze, K. Murphy, M. Del Giorno: Autonomous mobility for the demo III experimental unmanned vehicles, AUVS Int. Conf. Unnanned Veh. (2002)
K. Ohno, T. Suzuki, K. Higashi, M. Tsubota, E. Takeuchi, S. Tadokoro: Classification of 3-D point cloud data that includes line and frame objects on the basis of geometrical features and the pass rate of laser rays, Proc. 8th Int. Conf. Field Serv. Robotics (2012)
M. Onosato, T. Watasue: Two attempts at linking robots with disaster information: InfoBalloon and gareki engineering, Adv. Robotics 16(6), 545–548 (2002)
M. Onosato: Digital GAREKI modeling for exploring knowledge of disaster-collapsed houses, IEEE Int. Workshop Saf. Secur. Rescue Robotics (SSRR) (2006)
L. Woosub, K. Sungchul, K. Munsang, P. Mignon: ROBHAZ-DT3: Teleoperated mobile platform with passively adaptive double-track for hazardous environment applications, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 33–38
B. Yamauchi: Packbot: A versatile platform for military robotics, Proc. SPIE 5422, 228–237 (2004)
D. Inoue, K. Ohno, S. Nakamura, S. Tadokoro, E. Koyanagi: Whole-body touch sensors for tracked mobile robots using force-sensitive chain guides, IEEE Int. Workshop Saf. Secur. Rescue Robotics (SSRR) (2008) pp. 71–76
A. Jain, J. Balaram, J. Cameron, J. Guineau, C. Lim, M. Pornerantz, G. Sohl: Recent developments in the ROAMS planetary rover simulation environment, Proc. 2004 IEEE Aerosp. Conf., Big Sky (2004) pp. 861–876
K. Iagnemma, C. Senatore, B. Trease, R. Arvidson, A. Shaw, F. Zhou, L. Van Dyke, R. Lindemann: Terramechanics modeling of mars surface exploration rovers for simulation and parameter estimation, ASME Int. Des. Eng. Tech. Conf. (2011)
R. Bauer, W. Leung, T. Barfoot: Development of a dynamic simulation tool for the exomars rover, Proc. 8th Int. Symp. Artif. Intell., Robotics Autom. Space, Munich (2005)
M.G. Bekker: Theory of Land Locomotion (Univ. Michigan Press, Ann Arbor 1956)
M.G. Bekker: Introduction to Terrain-Vehicle Systems (Univ. Michigan Press, Ann Arbor 1969)
J.Y. Wong: Theory of Ground Vehicles, 4th edn. (Wiley, Hoboken 2008)
J.Y. Wong, A.R. Reece: Prediction of rigid wheel performance based on the analysis of soil-wheel stresses – Part I: Performance of driven rigid wheels, J. Terramechanics 4(1), 81–98 (1967)
J.Y. Wong, A.R. Reece: Prediction of rigid wheel performance based on the analysis of soil-wheel stresses – Part II: Performance of towed rigid wheels, J. Terramechanics 4(2), 7–25 (1967)
I.C. Schmid: Interaction of vehicle and terrain results from 10 years research at IKK, J. Terramechanics 32(1), 3–25 (1995)
L. Ding, Z. Deng, H. Gao, K. Nagatani, K. Yoshida: Planetary rovers' wheel-soil interaction mechanics: New challenges and applications for wheeled mobile robots, Intell. Serv. Robotics 4(1), 17–38 (2010)
H. Nakashima, H. Fujii, A. Oida, M. Momozu, Y. Kawase, H. Kanamori, S. Aoki, T. Yokoyama: Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM, J. Terramechanics 44, 153–162 (2007)
H. Nakashima, H. Fujii, A. Oida, M. Momozu, H. Kanamori, S. Aoki, T. Yokoyama, H. Shimizu, J. Miyasaka, K. Ohdoi: Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain, J. Terramechanics 47, 307–321 (2010)
W. Li, Y. Huang, Y. Cui, S. Dong, J. Wang: Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion, J. Terramechanics 47, 161–172 (2010)
K. Iagnemma: A Laboratory single wheel testbed for studying planetary rover wheel-terrain interaction, Tech. Rep. 01-05-05 (MIT, Cambridge 2005)
S. Wakabayashi, H. Sato, S. Nishida: Design and mobility evaluation of tracked lunar vehicle, J. Terramechanics 46(3), 105–114 (2009)
N. Patel, R. Slade, J. Clemmet: The ExoMars rover locomotion subsystem, J. Terramechanics 47, 227–242 (2010)
G. Ishigami, A. Miwa, K. Nagatani, K. Yoshida: Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil, J. Field Robotics 24(3), 233–250 (2007)
R. Lindemann, D. Bickler, B. Harrington, G. Ortiz, C. Voorhees: Mars exploration rover mobility development, IEEE Robotics Autom. Mag. 13(2), 19–26 (2006)
G. Ishigami, A. Miwa, K. Nagatani, K. Yoshida: Terramechanics-based analysis on slope traversability for a planetary exploration rover, Proc. 25th Int. Symp. Space Technol. Sci. (2006) pp. 1025–1030
S. Michaud, L. Richter, T. Thueer, A. Gibbesch, T. Huelsing, N. Schmitz, S. Weiss, A. Krebs, N. Patel, L. Joudrier, R. Siegwart, B. Schäfer, A. Ellery: Rover chassis evaluation and design optimisation using the RCET, Proc. 9th ESA Workshop Adv. Space Technol. Robotics Autom. (ASTRA) (2006)
K. Nagatani, A. Ikeda, K. Sato, K. Yoshida: Accurate estimation of drawbar pull of wheeled mobile robots traversing sandy terrain using built-in force sensor array wheel, Proc. 2009 IEEE/RSJ Int. Conf. Robots Syst. (IROS), St. Loius (2009) pp. 2373–2378
G. Meirion-Griffith, M. Spenko: A Modified pressure-sinkage model for small, rigid wheels on deformable terrains, J. Terramechanics 48(2), 149–155 (2011)
C. Senatore, K. Iagnemma: Direct shear behaviour of dry, granular soils for low normal stress with application to lightweight robotic vehicle modeling, 17th Conf. Terrain-Veh. Syst. (ISTVS), Blacksburg (2011)
K. Iagnemma, S. Kang, H. Shibly, S. Dubowsky: Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers, IEEE Trans. Robotics 20(5), 921–927 (2004)
S. Hutangkabodee, Y. Zweiri, L. Seneviratne, K. Althoefer: Soil parameter identification for wheel-terrain interaction dynamics and traversability prediction, Int. J. Autom. Comput. 3(3), 244–251 (2006)
D. Helmick, A. Angelova, L. Matthies, C. Brooks, I. Halatci, S. Dubowsky, K. Iagnemma: Experimental results from a terrain adaptive navigation system for planetary rovers, Proc. 9th Int. Symp. Artif. Intell., Robotics Autom. Space (i-SAIRAS), Hollywood (2008)
G. Ishigami, G. Kewlani, K. Iagnemma: A statistical approach to mobility prediction for planetary surface exploration rovers in uncertain terrain, IEEE Robotics Autom. Mag. 16(4), 61–70 (2009)
O. Yoshito, K. Nagatani, K. Yoshida, S. Tadokoro, T. Yoshida, E. Koyanagi: Shared autonomy system for traversing and turning tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning, J. Field Robotics 28(6), 875–893 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Video-References
Video-References
-
:
-
Mobility prediction of rovers on soft terrain available from http://handbookofrobotics.org/view-chapter/50/videodetails/184
-
:
-
Experiments of wheeled rovers in a sandbox covered with loose soil available from http://handbookofrobotics.org/view-chapter/50/videodetails/185
-
:
-
Terradynamics of legged locomotion for traversal in granular media available from http://handbookofrobotics.org/view-chapter/50/videodetails/186
-
:
-
Interaction human-robot supervision, long range science rover for Mars exploration available from http://handbookofrobotics.org/view-chapter/50/videodetails/187
-
:
-
A path-following control scheme for a four-wheeled mobile robot available from http://handbookofrobotics.org/view-chapter/50/videodetails/188
-
:
-
Evaluation test of tracked vehicles on random step fields in the Disaster City available from http://handbookofrobotics.org/view-chapter/50/videodetails/189
-
:
-
Autonomous sub-tracks control available from http://handbookofrobotics.org/view-chapter/50/videodetails/190
-
:
-
Autonomous sub-tracks control available from http://handbookofrobotics.org/view-chapter/50/videodetails/191
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Nagatani, K., Ishigami, G., Okada, Y. (2016). Modeling and Control of Robots on Rough Terrain. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_50
Download citation
DOI: https://doi.org/10.1007/978-3-319-32552-1_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32550-7
Online ISBN: 978-3-319-32552-1
eBook Packages: EngineeringEngineering (R0)