Skip to main content

Industrial Robotics

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Much of the technology that makes robots reliable, human friendly, and adaptable for numerous applications has emerged from manufacturers of industrial robots. With an estimated installation base in 2014 of about 1.5 million units, some 171000 new installations in that year and an annual turnover of the robotics industry estimated to be US$ 32 billion, industrial robots are by far the largest commercial application of robotics technology today.

The foundations for robot motion planning and control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate the many unsolved problems that still prevent the wider use of robots in today’s agile manufacturing environments. In this chapter, we present a brief history and descriptions of typical industrial robotics applications and at the same time we address current critical state-of-the-art technological developments. We show how robots with different mechanisms fit different applications and how applications are further enabled by latest technologies, often adopted from technological fields outside manufacturing automation.

We will first present a brief historical introduction to industrial robotics with a selection of contemporary application examples which at the same time refer to a critical key technology. Then, the basic principles that are used in industrial robotics and a review of programming methods will be outlined. We will also introduce the topic of system integration particularly from a data integration point of view. The chapter will be closed with an outlook based on a presentation of some unsolved problems that currently inhibit wider use of industrial robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

6-D:

six-dimensional

AGV:

automated guided vehicle

CAD:

computer-aided design

CAM:

computer-aided manufacturing

CD:

committee draft

CF:

carbon fiber

CNC:

computer numerical control

CP:

continuous path

CPS:

cyber physical system

DC:

direct current

DFA:

design for assembly

DH:

Denavit–Hartenberg

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

DOF:

degree of freedom

FMS:

flexible manufacturing system

FSW:

friction stir welding

GMAW:

gas-shielded metal arc welding

I/O:

input/output

IFR:

International Federation of Robotics

ISO:

International Organization for Standardization

IT:

information technology

LCC:

life-cycle-costing

MORO:

mobile robot

MTBF:

mean time between failures

NC:

numerical control

OLP:

offline programming

PC:

personal computer

PKM:

parallel kinematic machine

parallel kinematics machine

PLC:

programmable logic controller

POI:

point of interest

PUMA:

programmable universal machine for assembly

R&D:

research and development

RC:

robot controller

SCARA:

selective compliance assembly robot arm

SKM:

serial kinematic machines

VCR:

video cassette recorder

References

  1. The International Federation of Robotics (IFR): World Robotics 2015. Statistics, Market Analysis, Forecasts, Case Studies and Profitability of Robot Investments (International Federation of Robotics, Frankfurt 2015)

    Google Scholar 

  2. D. Bourne: My Boss the Robot, Scientific American 308(5), 37–41 (2013)

    Article  Google Scholar 

  3. M.P. Groover: Automation, Production Systems, and Computer-Integrated Manufacturing, 3rd edn. (Prentice-Hall, Upper Saddle River 2007)

    Google Scholar 

  4. International Organization for Standardization: Standards catalogue, 25.040.30: Industrial robots. Manipulators, http://www.iso.org/iso/home/store/catalogue_ics/catalogue_ics_browse.htm?ICS1=25&ICS2=40&ICS3=30 (2014)

  5. International Organization for Standardization: ISO 10218-1:2011. Robots and robotic devices – Safety requirements for industrial robots – Part 1: Robots, http://www.iso.org/iso/home/store/catalogue_detail.html?csnumber=51330(2011)

  6. International Organization for Standardization: ISO 10218-2:2011. Robots and robotic devices – Safety requirements for industrial robots – Part 2: Robot systems and integration, http://www.iso.org/iso/home/store/catalogue_detail.html?csnumber=41571 (2011)

  7. L. Westerlund: The Extended Arm of Man. A History of the Industrial Robot (Informationsförlaget, Stockholm 2000)

    Google Scholar 

  8. D. Hunt: Industrial Robotics Handbook (Industrial, New York 1983)

    Google Scholar 

  9. V.D. Scheinman: Design of a Computer Controlled Manipulator, Ph.D. Thesis (Stanford Univ., Stanford 1969)

    Google Scholar 

  10. International Federation of Robotics (IFR): History of Industrial Robots. From the first installation until today (International Federation of Robotics, Frankfurt 2012), http://www.ifr.org/uploads/media/History_of_Industrial_Robots_online_brochure_by_IFR_2012.pdf

  11. H. Makino: Assembly robot, US4341502 A (1982)

    Google Scholar 

  12. G. Boothroyd, P. Dewhurst, W. Knight: Product Design for Manufacture and Assembly, 3rd edn. (CRC, Boca Raton 2011)

    Google Scholar 

  13. R. Curran, G. Mayer: The architecture of the AdeptOne${}^{{\text{\textregistered}}}$ direct-drive robot, Am. Control Conf., Boston (1985)

    Google Scholar 

  14. X.-J. Liu, J. Wang: Performance evaluation of parallel mechanisms. In: Parallel Kinematics, Springer Tracts in Mechanical Engineering, (Springer, Berlin, Heidelberg 2014) pp. 185–238

    Chapter  Google Scholar 

  15. S. Haddadin, S. Parusel, R. Belder, A. Albu-Schaeffer: It is (almost) all about human safety: A novel paradigm for robot design control and planning, Lect. Notes Comput. Sci. 8153, 202–215 (2013)

    Article  Google Scholar 

  16. R. Bloss: Innovations like two arms, cheaper prices, easier programming, autonomous and collaborative operation are driving automation deployment in manufacturing and elsewhere, Assem. Autom. 33(4), 312–316 (2013)

    Article  Google Scholar 

  17. S. Kock, T. Vitor, M. Björn, H. Jerregard, M. Källmann, I. Lundberg: Robot concept for scalable, flexible assembly automation, Proc. IEEE Int. Symp. Assem. Manuf. (ISAM), Tampere (2011)

    Google Scholar 

  18. S. Bogh, M. Hvilshoj, M. Kristiansen, O. Madsen: Identifying and evaluating suitable tasks for autonomous industrial mobile manipulators (AIMM), Int. J. Adv. Manuf. Technol. 61(5-8), 713–726 (2012)

    Article  Google Scholar 

  19. C.Y.K. Smith, L. Nalpantidis, X. Gratal, P. Qi, D. Dimarogonas, D. Kragic: Dual arm manipulation – a survey, Robot. and Auton. Syst. 60(10), 1340–1353 (2012)

    Article  Google Scholar 

  20. P. Gorle, A. Clive: Positive Impact of Industrial Impacts on Employment (International Federation of Robotics, Frankfurt 2013)

    Google Scholar 

  21. J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, A. Marrs: Disruptive technologies: Advances that will transform life, business, and the global economy, http://www.mckinsey.com/insights/business_technology/disruptive_technologies (2013)

  22. E. Westkämper: Towards the Re-Industrialization of Europe: A Concept for Manufacturing for 2030 (Springer, Berlin, Heidelberg, 2014)

    Book  Google Scholar 

  23. M. Hedelind, M. Jackson: How to improve the use of industrial robots in lean manufacturing systems, J. Manuf. Technol. Manag. 22(7), 891–905 (2011)

    Article  Google Scholar 

  24. H. Kagermann, W. Wahlster, J. Helbig: Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0. http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf (Forschungsunion/acatech, Frankfurt 2013)

  25. R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe: The KUKA-DLR lightweight robot arm – a new reference platform for robotics research and manufacturing, 41st Int. Symp. Robot. 6th Ger. Conf. Robot. (ROBOTIK), Munich (2010)

    Google Scholar 

  26. M. Hedelind, S. Kock: Requirements on flexible robot systems for small parts assembly: A case study, Proc. 2011 IEEE Int. Symp. Assem. Manuf. (ISAM), Tampere (2011) pp. 1–7

    Google Scholar 

  27. S. Kinkel, E. Kirner, H. Armbruster, A. Jäger: Relevance and innovation of production-related services in manufacturing industry, Int. J. Technol. Manag. 55(3/4), 263–273 (2011)

    Article  Google Scholar 

  28. International Organization for Standardization: ISO 8373. Robots and robotic devices – Vocabulary, http://www.iso.org/iso/home/store/catalogue_detail.html?csnumber=53830 (2012)

  29. R. Bloss: Review of manufacturing cells as they achieve high levels of autonomy and flexibility, Assem. Autom. 33(2), 112–116 (2013)

    Article  Google Scholar 

  30. A. Kahn: The Encyclopedia of Work-related Illnesses, Injuries, and Health Issues (Facts On File, New York 2004)

    Google Scholar 

  31. M. Wilson: Developments in robot applications for food manufacturing, Ind. Robot Int. J. 37(6), 498–502 (2010)

    Article  Google Scholar 

  32. R. Moreno Masey, J. Gray, T. Dodd, D. Caldwell: Guidelines for the design of low-cost robots for the food industry, Ind. Robot Int. J. 37(6), 509–517 (2010)

    Article  Google Scholar 

  33. K. Mathia: Principles and Applications in Cleanroom Automation (Cambridge Univ. Press, Cambridge 2010)

    Google Scholar 

  34. D. Rossi, E. Bertolini, M. Fenaroli, F. Marciano, M. Alberti: A multi-criteria ergonomic and performance methodology for evaluating alternatives in “manuable” material handling, Int. J. Ind. Ergon. 43(4), 314–327 (2013)

    Article  Google Scholar 

  35. D. Caldwell: Robotics and Automation in the Food Industry: Current and Future Technologies (Woodhead, Cambridge 2012)

    Google Scholar 

  36. M. Palzkill, A. Verl: Object pose detection in industrial environment, Proc. 7th Ger. Conf. Robot. (ROBOTIK), Munich (2012)

    Google Scholar 

  37. R. Mattone, M. Divona, A. Wolf: Sorting of items on a moving conveyor belt. Part 2: Performance evaluation and optimization of pick-and-place operations, Robot. Comput.-Integr. Manuf. 16(2/3), 81–90 (2000)

    Article  Google Scholar 

  38. A. Grzesiak, R. Becker, A. Verl: The bionic handling assistant: A success story of additive manufacturing, Assem. Autom. 4, 329–333 (2011)

    Article  Google Scholar 

  39. K. Ikeuchi, B. Horn, S. Nagata, T. Callahan, O. Fein: Picking up an object from a pile of objects, A.I. Memo No. 726 (Artif. Intell. Lab./MIT, Cambridge 1983)

    Google Scholar 

  40. M.-Y. Liu, O. Tuzel, A. Veeraraghavan, T. Marks, R. Chellappa: Fast object localization and pose estimation in heavy clutter for robotic bin picking, Int. J. Robotics Res. 31(8), 951–973 (2012)

    Article  Google Scholar 

  41. J.J. Rodrigues, J.-S. Kim, M. Furukawa, J. Xavier, P. Aguiar, T. Kanade: 6D pose estimation of textureless shiny objects using random ferns for bin picking, IEEE/RSJ Int. Conf. Intell. Robots Syst., Vilamoura (2012)

    Google Scholar 

  42. Z. Pan, J. Polden, N. Larkin, S. Van Duin, J. Norrish: Recent progress on programming methods for industrial robots, Robot. Comput.-Integr. Manuf. 28(2), 87–94 (2012)

    Article  Google Scholar 

  43. P. Klüger: Future body-in-white concepts. Increased sustainability with reduced investment and life-cycle-cost, Automot. Manuf. Solut., Shanghai (2013)

    Google Scholar 

  44. M. Shah, R.D. Eastman, T. Hong: An overview of robot-sensor calibration methods for evaluation of perception systems, Workshop Perform. Metr. Intell. Syst., New York (2012)

    Google Scholar 

  45. Deutsches Institut für Normung: DIN8593-0:2003-09: Manufacturing processes joining – Part 0: General; classification, subdivision, terms and definitions, http://www.beuth.de/de/norm/din-8593-0/65031206 (2003)

  46. N. Lohse, H. Hirani, S. Ratchev, M. Turitto: An ontology for the definition and validation of assembly processes for evolvable assembly systems, Proc. 6th IEEE Int. Symp. Assem. Task Plan. (2005) pp. 242–247

    Google Scholar 

  47. K. Malecki: Vehicle body mounted door seals on a roll, Adhesion Adhesives Sealants 6(1), 23–25 (2009)

    Article  Google Scholar 

  48. S. Kock, T. Vittor, B. Matthias: Robot concept for scalable, flexible assembly automation, Proc. IEEE Int. Symp. Assem. Manuf. (ISAM), Tampere (2011)

    Google Scholar 

  49. H. Chen, J. Wang, G. Zhang, T. Fuhlbrigge, S. Kock: High-precision assembly automation based on robot compliance, Int. J. Adv. Manuf. Technol. 45(9/10), 999–1006 (2009)

    Article  Google Scholar 

  50. A. Stolt, M. Linderoth, A. Robertsson, R. Johansson: Force controlled robotic assembly without a force sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Saint Paul (2012)

    Google Scholar 

  51. ABB Robotics: Application manual – force control for machining, http://new.abb.com/products/robotics/application-equipment-and-accessories/flexfinishing/function-package-for-force-control (2013)

  52. J. Domnick, Z. Yang, Q. Ye: Simulation of the film formation at a high-speed rotary bell atomizer used in automotive spray painting processes, Proc. 22nd Eur. Conf. Liq. At. Spray Syst. ILASS Eur., Como (2008)

    Google Scholar 

  53. M. Jonsson, A. Stolt, A. Robertsson, S. von Gegerfelt, K. Nilsson: On force control for assembly and deburring of castings, Prod. Eng. 7(4), 351–360 (2013)

    Article  Google Scholar 

  54. Z. Pan, H. Zhanh, Z. Zhu, J. Wang: Chatter analysis of robotic machining process, J. Mater. Process. Technol. 173(3), 301–309 (2006)

    Article  Google Scholar 

  55. M. Weck, C. Brecher: Werkzeugmaschinen 2 – Konstruktion und Berechnung (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  56. U. Schneider, M. Ansaloni, M. Drust, F. Leali, A. Verl: Experimental investigation of sources of error in robot machining, Int. Workshop Robot. Smart Manuf., Porto (2013)

    Google Scholar 

  57. J. Wang, H. Zhang, T. Fuhlbrigge: Improving machining accuracy with robot deformation compensation, Int. Conf. Intell. Robots Syst., St. Louis (2009)

    Google Scholar 

  58. C. Lehmann, B. Olofsson, K. Nilsson, M. Halbauer, M. Haage, A. Robertsson, O. Sornmo, U. Berger: Robot joint modeling and parameter identification using the clamping method, IFAC Conf. Manuf. Modell. Manag. Control, Saint Petersburg (2013)

    Google Scholar 

  59. B. Saund, R. DeVlieg: High accuracy articulated robots with CNC control system, SAE Int. J. Aerosp. 6(2), 780–784 (2013)

    Article  Google Scholar 

  60. U. Schneider, J.R. Diaz Posada, M. Drust, A. Verl: Position control of an industrial robot using an optical measurement system for machining purposes, Proc. 11th Int. Conf. Manuf. Res. (2013) pp. 307–312

    Google Scholar 

  61. U. Schneider, B. Olofsson, O. Sörnmo, M. Drust, A. Robertsson, M. Hägele, R. Johansson: Integrated approach to robotic machining with macro/micro actuation, Robotics Comput.-Integr. Manuf. 30(6), 636–647 (2014)

    Article  Google Scholar 

  62. International Organization for Standardization: ISO 12100:2010. Safety of machinery – General principles for design – Risk assessment and risk reduction, http://www.iso.org/iso/home/store/catalogue_detail.html?csnumber=51528 (2010)

  63. European Parliament: Directive 2006/42/EC of the European Parliament and the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast), http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:157:0024:0086:EN:PDF (2006)

  64. Siemens: Easy Implementation of the European Machinery Directive, Functional Safety of Machines and Systems (Siemens, Fürth 2012)

    Google Scholar 

  65. International Organization for Standardization: ISO 13849-1:2006. Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design, http://www.iso.org/iso/home/store/catalogue_detail.html?csnumber=3491 (2006)

  66. International Electrotechnical Commission: IEC 62061 ed1.0. Safety of machinery – Functional safety of safety-related electrical, electronic and programmable electronic control systems: http://webstore.iec.ch/webstore/webstore.nsf/artnum/033604!opendocument (2005)

  67. International Electrotechnical Commission: IEC 61508 ed2.0. Functional safety of electrical/electronic/programmable electronic safety-related systems, http://www.iec.ch/functionalsafety/standards (2010)

  68. International Organization for Standardization: ISO 13855:2010. Safety of machinery – Positioning of safeguards with respect to the approach speeds of parts of the human body, http://www.iso.org/iso/home/store/catalogue_detail.html?csnumber=42845 (2010)

  69. International Organization for Standardization: ISO 13857:2008. Safety of machinery – Safety distances to prevent hazard zones being reached by upper and lower limbs, http://www.iso.org/iso/home/store/catalogue_detail.html?csnumber=39255 (2008)

  70. R. Hollmann, A. Rost, M. Hägele, A. Verl: A HMM-based approach to learning probability models of programming strategies for industrial robots, 2010 IEEE Int. Conf. Robotics Autom., Anchorage (2010)

    Google Scholar 

  71. B. Lacevic, P. Rocco, A. Zanchettin: Safety assessment and control of robotic manipulators using danger field, IEEE Trans. Robotics 29(5), 1257–1270 (2013)

    Article  Google Scholar 

  72. International Organization for Standardization: ISO/TC 184/SC 2. Robots and robotic devices, http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=54138&development=on (2014)

  73. S. Oberer-Treitz, A. Puzik, A. Verl: Measuring the collision potential of industrial robots, 41st Int. Symp. Robot. 6th Germ. Conf. Robot. (2010)

    Google Scholar 

  74. R. Behrens, N. Elkmann: Study on meaningful and verified thresholds for minimizing the consequences of human-robot collisions, IEEE Int. Conf. Robotics Autom. (ICRA) (2014) pp. 3378–3383

    Google Scholar 

  75. S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel, R. Burgkart, A. Bicchi, A. Albu-Schaeffer: On making robots understand safety: Embedding injury knowledge into control, Int. J. Robotics Res. 31(13), 1578–1602 (2012)

    Article  Google Scholar 

  76. J. Marvel, J. Falco: Best practices and performance metrics using force control for robot assembly (Nat. Inst. Stand. Technol., Gaithersburg 2012)

    Book  Google Scholar 

  77. R. Zurawski: Integration Technologies for Industrial Automated Systems (CRC, Boca Raton 2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hägele .

Editor information

Editors and Affiliations

Video-References

Video-References

:

SMErobotics project video available from http://handbookofrobotics.org/view-chapter/54/videodetails/260

:

SMErobot video coffee break (English) available from http://handbookofrobotics.org/view-chapter/54/videodetails/261

:

SMErobot final project video available from http://handbookofrobotics.org/view-chapter/54/videodetails/262

:

SMErobot – New parallel kinematic with unique concepts for demanding handling and process applications available from http://handbookofrobotics.org/view-chapter/54/videodetails/265

:

SMErobot D4 The woodworking assistant available from http://handbookofrobotics.org/view-chapter/54/videodetails/266

:

SMErobotics demonstrator D1 assembly with dual-arm industrial manipulators available from http://handbookofrobotics.org/view-chapter/54/videodetails/380

:

SMErobotics demonstrator D2 human–robot cooperation in wooden house production available from http://handbookofrobotics.org/view-chapter/54/videodetails/381

:

SMErobotics demonstrator D3 assembly with sensitive compliant robot arms available from http://handbookofrobotics.org/view-chapter/54/videodetails/382

:

SMErobotics demonstrator D4 welding robot assistant available from http://handbookofrobotics.org/view-chapter/54/videodetails/383

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hägele, M., Nilsson, K., Pires, J.N., Bischoff, R. (2016). Industrial Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics