Skip to main content

Space Robotics

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

In the space community, any unmanned spacecraft can be called a robotic spacecraft. However, Space Robots are considered to be more capable devices that can facilitate manipulation, assembling, or servicing functions in orbit as assistants to astronauts, or to extend the areas and abilities of exploration on remote planets as surrogates for human explorers.

In this chapter, a concise digest of the historical overview and technical advances of two distinct types of space robotic systems, orbital robots and surface robots, is provided. In particular, Sect. 55.1 describes orbital robots, and Sect. 55.2 describes surface robots. In Sect. 55.3, the mathematical modeling of the dynamics and control using reference equations are discussed. Finally, advanced topics for future space exploration missions are addressed in Sect. 55.4.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

ASTRO:

autonomous space transport robotic operations

CARD:

computer-aided remote driving

DLR:

German Aerospace Center

DOF:

degree of freedom

ECU:

electronics controller unit

ERA:

European robotic arm

ESA:

European Space Agency

ETS-VII:

Engineering Test Satellite VII

EVA:

extravehicular activity

FPGA:

field-programmable gate array

GEO:

geostationary Earth orbit

GF:

grapple fixture

GJM:

generalized Jacobian matrix

HST:

Hubble space telescope

ISS:

international space station

JAXA:

Japan Aerospace Exploration Agency

JEM:

Japan Experiment Module

JEMRMS:

Japanese experiment module remote manipulator system

JPL:

Jet Propulsion Laboratory

LEO:

low Earth orbit

MBS:

mobile base system

MESUR:

Mars environmental survey

MRSR:

Mars rover sample return

NASDA:

National Space Development Agency of Japan

NLP:

nonlinear programming problem

ORU:

orbital replacement unit

PDGF:

power data grapple fixture

RBT:

robot experiment

RNS:

reaction null-space

ROKVISS:

robotics components verification on the ISS

RVD:

rendezvous/docking

RWS:

robotic workstation

SAN:

semiautonomous navigation

SEE:

standard end effector

SGM:

semiglobal matching

SLRV:

surveyor lunar rover vehicle

SPDM:

special purpose dexterous manipulator

SQP:

sequential quadratic programming

SRMS:

shuttle remote manipulator system

SSRMS:

space station remote manipulator system

SVD:

singular value decomposition

VM:

virtual manipulator

References

  1. D.L. Akin, M.L. Minsky, E.D. Thiel, C.R. Kurtzman: Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Phase II (NASA, Washington 1983)

    Google Scholar 

  2. C.G. Wagner-Bartak, J.A. Middleton, J.A. Hunter: Shuttle remote manipulator system hardware test facility, 11th Space Simulat. Conf. (1980) pp. 79–94, NASA CP-2150

    Google Scholar 

  3. S. Greaves, K. Boyle, N. Doshewnek: Orbiter boom sensor system and shuttle return to flight: Operations analyses, AIAA Guidance Navigation Contr. Conf. Exhibit. San Francisco (2005)

    Google Scholar 

  4. C. Crane, J. Duffy, T. Carnahan: A kinematic analysis of the space station remote manipulator system (SSRMS), J. Robotic Syst. 8, 637–658 (1991)

    Article  MATH  Google Scholar 

  5. M.F. Stieber, C.P. Trudel, D.G. Hunter: Robotic systems for the International Space Station, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1997) pp. 3068–3073

    Google Scholar 

  6. D. Bassett, A. Abramovici: Special purpose dexterous manipulator (SPDM) requirements verification, Proc. 5th Int. Symp. Artif. Intell. Robotics Autom. Space (1999) pp. 43–48, ESA SP-440

    Google Scholar 

  7. R. Boumans, C. Heemskerk: The European robotic arm for the International Space Station, Robotics Auton. Syst. 23(1), 17–27 (1998)

    Article  Google Scholar 

  8. P. Laryssa, E. Lindsay, O. Layi, O. Marius, K. Nara, L. Aris, T. Ed: International Space Station robotics: A comparative study of ERA, JEMRMS and MSS, Proc. 7th ESA Workshop Adv. Space Technol. Robotics Autom. (ASTRA) (2002)

    Google Scholar 

  9. T. Matsueda, K. Kuraoka, K. Goma, T. Sumi, R. Okamura: JEMRMS system design and development status, Proc. IEEE Natl. Telesyst. Conf. (NTC) (1991) pp. 391–395

    Chapter  Google Scholar 

  10. S. Doi, Y. Wakabayashi, T. Matsuda, N. Satoh: JEM remote manipulator system, J. Aeronaut. Space Sci. Jpn. 50(576), 7–14 (2002)

    Google Scholar 

  11. H. Morimoto, N. Satoh, Y. Wakabayashi, M. Hayashi, Y. Aiko: Performance of Japanese robotic arms of the International Space Station, 15th IFAC World Congr. (2002)

    Google Scholar 

  12. G. Hirzinger, B. Brunner, J. Dietrich, J. Heindl: Sensor-based space robotics – ROTEX and its telerobotic features, IEEE Trans. Robotics Autom. 9(5), 649–663 (1993)

    Article  Google Scholar 

  13. M. Oda, K. Kibe, F. Yamagata: ETS-VII – Space robot in-orbit experiment satellite, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 739–744

    Chapter  Google Scholar 

  14. K. Yoshida: Engineering test satellite VII flight experiments for space robot dynamics and control: Theories on laboratory test beds ten years ago, now in orbit, Int. J. Robotics Res. 22(5), 321–335 (2003)

    Article  Google Scholar 

  15. K. Landzettel, B. Brunner, G. Hirzinger, R. Lampariello, G. Schreiber, B.-M. Steinmetz: A unified ground control and programming methodology for space robotics applications – demonstrations on ETS-VII, Proc. Int. Symp. Robotics (ISR) (2000) pp. 422–427

    Google Scholar 

  16. J.C. Parrish, D.L. Akin, G.G. Gefke: The ranger telerobotic shuttle experiment: Implications for operational EVA/robotic cooperation, Proc. SAE Int. Conf. Environ. Syst. (2000)

    Google Scholar 

  17. J. Shoemaker, M. Wright: Orbital express space operations architecture program, Proc. SPIE 5088, 1–9 (2003)

    Article  Google Scholar 

  18. C. Preusche, D. Reintsema, K. Landzettel, G. Hirzinger: Robotics component verification on ISS ROKVISS – Preliminary results for telepresence, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 4595–4601

    Google Scholar 

  19. K. Landzettel, A. Albu-Schaffer, C. Preusche, D. Reintsema, B. Rebele, G. Hirzinger: Robotic on-orbit servicing – DLR’s experience and perspective, Proc. IEEE/RSJ Int. Conf. Intell. Robots Systems (IROS) (2006) pp. 4587–4594

    Google Scholar 

  20. J.-H. Ryu, J. Artigas, C. Preusche: A passive bilateral control scheme for a teleoperator with time-varying communication delay, Mechatronics 20(7), 812–823 (2010)

    Article  Google Scholar 

  21. J. Artigas, J.-H. Ryu, C. Preusche, G. Hirzinger: Network representation and passivity of delayed teleoperation systems, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 177–183

    Google Scholar 

  22. E. Stoll, U. Walter, J. Artigas, C. Preusche, P. Kremer, G. Hirzinger, J. Letschnik, H. Pongrac: Ground verification of the feasibility of telepresent on-orbit servicing, J. Field Robotics 26(3), 287–307 (2009)

    Article  Google Scholar 

  23. C. Ott, J. Artigas, C. Preusche, G. Hirzinger: Subspace-oriented energy distribution for the time domain passivity approach, Proc. IEEE/RSJ Int. Conf. Intell. Robots Systems (IROS’11) (2011) pp. 665–671

    Google Scholar 

  24. A.P. Vinogradov: Lunokhod 1 Mobile Lunar Laboratory (JPRS, Washington 1971), JPRS identification number 54525

    Google Scholar 

  25. A. Mishkin: Sojourner: An Insider’s View of the Mars Pathfinder Mission (Berkley Books, New York 2004)

    Google Scholar 

  26. B. Wilcox, T. Nguyen: Sojourner on mars and lessons learned for future planetary rovers, 28th Int. Conf. Environ. Syst. (1998)

    Google Scholar 

  27. M. Maimone, A. Johnson, Y. Cheng, R. Willson, L. Matthies: Autonomous navigation results from the Mars exploration rover (MER) mission, Proc. 9th Int. Symp. Exp. Robotics (ISER) (2004)

    Google Scholar 

  28. M. Maimone, Y. Cheng, L. Matthies: Two years of visual odometry on the Mars exploration rovers, J. Field Robotics 24(3), 169–186 (2007)

    Article  Google Scholar 

  29. M.G. Bekker: Off-The-Road Locomotion (Univ. Michigan Press, Ann Arbor 1960)

    Google Scholar 

  30. M.G. Bekker: Introduction to Terrain-Vehicle Systems (Univ. Michigan Press, Ann Arbor 1969)

    Google Scholar 

  31. R.A. Lewis, A.K. Bejczy: Planning considerations for a roving robot with arm, Int. Jt. Conf. Artif. Intell. (IJCAI) (1973) pp. 308–316

    Google Scholar 

  32. A. Thompson: The navigation system of the JPL Robot, Int. Jt. Conf. Artif. Intell. (IJCAI) (1977) pp. 749–757

    Google Scholar 

  33. Y. Yakimovsky, R.T. Cunningham: A system for extracting three-dimensional measurements from a stereo pair of TV cameras, Comp. Graph. Image Process. 7, 195–210 (1978)

    Article  Google Scholar 

  34. D. Dooling: Planetary rovers might roam better with an elastic loop mobility system, NASA Science News, http://science.nasa.gov/newhome/ headlines/msad28apr98_1b.htm 1989)

    Google Scholar 

  35. B.H. Wilcox: Computer-Aided Remote Driving, NASA Tech Briefs 18; 3 (NASA, Washington 1994)

    Google Scholar 

  36. E. Krotkov, J. Bares, T. Kanade, T. Mitchell, R. Simmons, W. Whittaker: Ambler: a six-legged planetary rover, 5th Int. Conf. Adv. Robotics, Robots Unstructured Environ. (ICAR), Vol. 1 (1991) pp. 717–722

    Chapter  Google Scholar 

  37. J. Bares, W. Whittaker: Walking robot with a circulating gait, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 2 (1990) pp. 809–816

    Google Scholar 

  38. B. Wilcox, D. Gennery: A Mars rover for the 1990s, J. Br. Interplanet. Soc. 40, 484–488 (1987)

    Google Scholar 

  39. B. Wilcox, L. Matthies, D. Gennery: Robotic vehicles for planetary exploration, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992)

    Google Scholar 

  40. D. Gennery, T. Litwin, B. Wilcox, B. Bon: Sensing and perception research for space telerobotics at JPL, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 311–317

    Google Scholar 

  41. J. Balaram, S. Hayati: A supervisory telerobotics testbed for unstructured environments, J. Robotics Syst. 9(2), 261–280 (1992)

    Article  Google Scholar 

  42. G. Giralt, L. Boissier: The French planetary rover VAP: concept and current developments, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1992) pp. 1391–1398, LAAS Report No. 92227

    Google Scholar 

  43. R. Chatila, S. Lacroiz, G. Giralt: A case study in machine intelligence: Adaptive autonomous space rovers, Int. Conf. Field Serv. Robotics (FSR) (1997) pp. 101–108, LAAS Report No. 97463

    Google Scholar 

  44. A. Castano, A. Fukunaga, J. Biesiadecki, L. Neakrase, P. Whelley, R. Greeley, M. Lemmon, R. Castano, S. Chien: Autonomous detection of dust devils and clouds on Mars, Proc. IEEE Int. Conf. Image Process. (2006) pp. 2765–2768

    Google Scholar 

  45. L. Matthies: Stereo vision for planetary rovers: Stochastic modeling to near real-time implementation, Int. J. Comput. Vis. 8(1), 71–91 (1992)

    Article  MathSciNet  Google Scholar 

  46. K. Yoshida, D.N. Nenchev, M. Uchiyama: Moving base robotics and reaction management control, 7th Int. Symp. Robotics Res., ed. by G. Giralt, G. Hirzinger (Springer, New York 1996) pp. 101–109

    Google Scholar 

  47. J. Russakow, S.M. Rock, O. Khatib: An operational space formulation for a free-flying multi-arm space robot, 4th Int. Symp. Exp. Robotics (1995) pp. 448–457

    Google Scholar 

  48. Y. Xu, T. Kanade (Eds.): Space Robotics: Dynamics and Control (Kluwer, Boston 1993)

    Google Scholar 

  49. Y. Umetani, K. Yoshida: Continuous path control of space manipulators mounted on OMV, Acta Astronaut. 15(12), 981–986 (1987), presented at the 37th IAF Conf, Oct. 1986

    Google Scholar 

  50. Y. Umetani, K. Yoshida: Resolved motion rate control of space manipulators with generalized Jacobian matrix, IEEE Trans. Robotics Autom. 5(3), 303–314 (1989)

    Article  Google Scholar 

  51. K. Yoshida: Impact dynamics representation and control with extended inversed inertia tensor for space manipulators, 6th Int. Symp. Robotics Res. (1994) pp. 453–463

    Google Scholar 

  52. K. Yoshida: Experimental study on the dynamics and control of a space robot with the experimental free-floating robot satellite (EFFORTS) simulators, Adv. Robotics 9(6), 583–602 (1995)

    Article  Google Scholar 

  53. Y. Nakamura, R. Mukherjee: Nonholonomic path planning of space robots via a bidirectional approach, IEEE Trans. Robotics Autom. 7(4), 500–514 (1991)

    Article  Google Scholar 

  54. S. Dubowsky, M. Torres: Minimizing attitude control fuel in space manipulator systems, Proc. Int. Symp. Artif. Intell. Robotics Autom. (i-SAIRAS) (1990) pp. 259–262

    Google Scholar 

  55. S. Dubowsky, M. Torres: Path planning for space manipulators to minimize spacecraft attitude disturbances, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (1991) pp. 2522–2528

    Google Scholar 

  56. K. Yoshida: Practical coordination control between satellite attitude and manipulator reaction dynamics based on computed momentum concept, Proc. 1994 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1994) pp. 1578–1585

    Google Scholar 

  57. M. Oda: Coordinated control of spacecraft attitude and its manipulator, Proc. 1996 IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 732–738

    Google Scholar 

  58. Z. Vafa, S. Dubowsky: On the dynamics of manipulators in space using the virtual manipulator approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 579–585

    Google Scholar 

  59. E. Papadopoulos, S. Dubowsky: Dynamic singularities in the control of free-floating space manipulators, ASME J. Dyn. Syst. Meas. Control 115(1), 44–52 (1993)

    Article  Google Scholar 

  60. Y. Umetani, K. Yoshida: Workspace and manipulability analysis of space manipulator, Trans. Soc. Instrum. Contr. Eng. E-1(1), 116–123 (2001)

    Google Scholar 

  61. D.N. Nenchev, Y. Umetani, K. Yoshida: Analysis of a redundant free-flying spacecraft/manipulator system, IEEE Trans. Robotics Autom. 8(1), 1–6 (1992)

    Article  Google Scholar 

  62. D.N. Nenchev, K. Yoshida, P. Vichitkulsawat, M. Uchiyama: Reaction null-space control of flexible structure mounted manipulator systems, IEEE Trans. Robotics Autom. 15(6), 1011–1023 (1999)

    Article  Google Scholar 

  63. V.H. Schulz: Reduced SQP Methods for Large Scale Optimal Control Problems in DAE with Application to Path Planning Problems for Satellite Mounted Robots, Ph.D. Thesis (Univ. Heidelberg, Heidelberg 1995)

    Google Scholar 

  64. E. Papadopoulos, S. Moosavian: Dynamics and control of multi-arm space robots during chase and capture operations, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1994) pp. 1554–1561

    Google Scholar 

  65. K. Yoshida, D. Dimitrov, H. Nakanishi: On the capture of tumbling satellite by a space robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006)

    Google Scholar 

  66. C.G. Henshaw: A unification of artificial potential function guidance and optimal trajectory planning, 15th Space Flight Mech. Meet. (2005)

    Google Scholar 

  67. F. Aghili: A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics, IEEE Trans. Robotics 28(3), 634–649 (2012)

    Article  Google Scholar 

  68. R. Lampariello, G. Hirzinger: Generating feasible trajectories for autonomous on-orbit grasping of spinning debris in a useful time, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013)

    Google Scholar 

  69. T. Binder, L. Blank, R. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kronseder, W. Marquardt, J.P. Schloeder, O. von Stryk: Introduction to model based optimization of chemical processes on moving horizons. In: Online Optimization of Large Scale Systems, ed. by M. Grotschel, S.O. Krumke, J. Rambau (Springer, Berlin, Heidelberg 2001) pp. 295–339

    Chapter  MATH  Google Scholar 

  70. S. Jacobsen, C. Lee, C. Zhu, S. Dubowsky: Planning of safe kinematic trajectories for free-flying robots approaching an uncontrolled spinning satellite, ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. (DETC) (2002)

    Google Scholar 

  71. S.K. Agrawal, K. Pathak, J. Franch, R. Lampariello, G. Hirzinger: A differentially flat open-chain space robot with arbitrarily oriented joint axes and two momentum wheels at the base, IEEE Trans. Autom. Contr. 54(9), 2185–2191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. D.N. Nenchev, K. Yoshida, M. Uchiyama: Reaction null-space based control of flexible structure mounted manipulator systems, IEEE 35th Conf. Decis. Control (1996) pp. 4118–4123

    Google Scholar 

  73. W.J. Book, S.H. Lee: Vibration control of a large flexible manipulator by a small robotic arm, Proc. Am. Control Conf. (1989)

    Google Scholar 

  74. M.A. Torres: Modelling, Path-Planning and Control of Space Manipulators: The Coupling Map Concept, Ph.D. Thesis (MIT, Cambridge 1993)

    Google Scholar 

  75. S. Abiko, K. Yoshida: An effective control strategy of japanese experimental module remote manipulator system (JEMRMS) using coupled and un-coupled dynamics, Proc. 7th Int. Symp. Artif. Intell. Robotics Autom. Space (2003), Paper AS18 (CD-ROM)

    Google Scholar 

  76. S. Abiko: Dynamics and Control for a Macro-Micro Manipulator System Mounted on the International Space Station, Ph.D. Thesis (Tohoku Univ., Tokyo 2005)

    Google Scholar 

  77. S. Abiko, K. Yoshida: On-line parameter identification of a payload handled by flexible based manipulator, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 2930–2935

    Google Scholar 

  78. S. Abiko, K. Yoshida: An adaptive control of a space manipulator for vibration suppression, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005)

    Google Scholar 

  79. G. Gilardi, I. Shraf: Literature survey of contact dynamics modeling, Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  80. K. Yoshida, H. Nakanishi, H. Ueno, N. Inaba, T. Nishimaki, M. Oda: Dynamics, control, and impedance matching for robotic capture of a non-cooperative satellite, Adv. Robotics 18(2), 175–198 (2004)

    Article  Google Scholar 

  81. H. Nakanishi, K. Yoshida: Impedance control of free-flying space robot for orbital servicing, J. Robotics Mechatron. 18(5), 608–617 (2006)

    Article  Google Scholar 

  82. P.M. Pathak, A. Mukherjee, A. DasGupta: Impedance control of space robots using passive degrees of freedom in controller domain, J. Dyn. Syst. Meas. Control 127, 564–578 (2006)

    Article  Google Scholar 

  83. S. Abiko, R. Lampariello, G. Hirzinger: Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006)

    Google Scholar 

  84. K. Iagnemma, H. Shibly, S. Dubowsky: On-line traction parameter estimation for planetary rovers, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)

    Google Scholar 

  85. K. Yoshida, H. Hamano: Motion dynamics of a rover with slip-based traction model, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)

    Google Scholar 

  86. A. Jain, J. Guineau, C. Lim, W. Lincoln, M. Pomerantz, G. Sohl, R. Steele: Roams: Planetary surface rover simulation environment, Proc. 7th Int. Symp. Artif. Intell. Robotics Autom. Space (i-SAIRAS) (2003)

    Google Scholar 

  87. K. Yoshida, T. Watanabe, N. Mizuno, G. Ishigami: Terramechanics-based analysis and traction control of a lunar/planetary rover, Proc. Int. Conf. Field Serv. Robotics (FSR) (2003)

    Google Scholar 

  88. K. Iagnemma, S. Dubowsky: Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control With Application to Planetary Rovers, Springer Tracts in Advanced Robotics, Vol. 12 (Springer, Berlin, Heidelberg 2004)

    Book  Google Scholar 

  89. K. Yoshida, G. Ishigami: Steering characteristics of a rigid wheel for exploration on loose soil, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004)

    Google Scholar 

  90. H. Shibly, K. Iagnemma, S. Dubowsky: An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers, J. Terramech. 42(1), 1–13 (2005)

    Article  Google Scholar 

  91. R. Bauer, W. Leung, T. Barfoot: Experimental and simulation results of wheel-soil interaction for planetary rovers, Proc. 2005 IEEE Int. Conf. Intell. Robots Syst. (IROS) (2005)

    Google Scholar 

  92. A. Ellery, N. Patel, R. Bertrand, J. Dalcomo: Exomars rover chassis analysis and design, Proc. 8th Int. Symp. Artif. Intell. Robotics Autom. Space (i-SAIRAS) (2005)

    Google Scholar 

  93. A. Gibbesch, B. Schäfer: Multibody system modelling and simulation of planetary rover mobility on soft terrain, Proc. 8th Int. Symp. Artif. Intell. Robotics Autom. Space (i-SAIRAS) (2005)

    Google Scholar 

  94. G. Ishigami, K. Yoshida: Steering characteristics of an exploration rover on loose soil based on all-wheel dynamics model, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005)

    Google Scholar 

  95. G. Ishigami, A. Miwa, K. Nagatani, K. Yoshida: Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil, J. Field Robotics 24(3), 233–250 (2007)

    Article  Google Scholar 

  96. V.K. Tiwari, K.P. Pandey, P.K. Pranav: A review on traction prediction equations, J. Terramech. 47(3), 191–199 (2010)

    Article  Google Scholar 

  97. L. Ding, H. Gao, Z. Deng, K. Nagatani, K. Yoshida: Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil, J. Terramech. 48(1), 27–45 (2011)

    Article  Google Scholar 

  98. G. Meirion-Griffith, M. Spenko: A modified pressure-sinkage model for small, rigid wheels on deformable terrains, J. Terramech. 48(2), 149–155 (2011)

    Article  Google Scholar 

  99. J.Y. Wong: Theory of Ground Vehicles (Wiley, New York 1978)

    Google Scholar 

  100. J.Y. Wong, A.R. Reece: Prediction of rigid wheel preformance based on the analysis of soil-wheel stresses. Part I, Preformance of driven rigid wheels, J. Terramech. 4, 81–98 (1967)

    Article  Google Scholar 

  101. Z. Janosi, B. Hanamoto: The analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils, Proc 1st Int. Conf. Terrain-Veh. Syst. (1961)

    Google Scholar 

  102. E. Hegedus: A Simplified Method for the Determination of Bulldozing Resistance, Land Locomotion Laboratory, Rep. No. 61U.S. (Army Tank Automotive Command, Warren 1960)

    Google Scholar 

  103. I. Rekleitis, E. Martin, G. Rouleau, R. L’Archeveque, K. Parsa, E. Dupuis: Autonomous capture of a tumbling satellite, J. Field Robotics 24(4), 275–296 (2007)

    Article  Google Scholar 

  104. J. Blamont: Balloons on other planets, Adv. Space Res. 1, 63–69 (1981)

    Article  Google Scholar 

  105. J.A. Cutts, K.T. Nock, J.A. Jones, G. Rodriguez, J. Balaram, G.E. Powell, S.P. Synott: Aerovehicles for planetary exploration, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995)

    Google Scholar 

  106. M.K. Heun, J.A. Jones, J.L. Hall: Gondola design for Venus deep-atmosphere aerobot operations, AIAA 36th Aerosp. Sci. Meeting Exhibit. ASME Wind Energy Symp. (1998)

    Google Scholar 

  107. S. Miller, J. Essmiller, D. Beaty: Mars deep drill – A mission concept for the next decade, Space Conf. Exhibit. (2004) pp. 2004–6048

    Google Scholar 

  108. S. Mukherjee, P. Bartlett, B. Glass, J. Guerrero, S. Stanley: Technologies for exploring the martian subsurface, Proc. IEEE Aerosp. Conf. (2006), Paper No. 1349

    Google Scholar 

  109. C.F. Ruoff, S.B. Skaar (Eds.): Teleoperation and Robotics in Space, Progress in Astronautics and Aeronautics Series (AIAA, Notre Dame 1994)

    Google Scholar 

  110. J. Field Robot. Special Issue on Space Robotics, Part I–Part III, 24(3–5), 167–434 (2007)

    Google Scholar 

  111. G.F. Bekey (Ed.): International Assessment of Research and Development in Robotics (WTEC, Baltimore 2006), http://www.wtec.org/robotics/

    Google Scholar 

  112. NSRC (Ed.): Assessment of Options for Extending the Life of the Hubble Space Telescope, National Research Council: Final Rep. (National Academies Press, Washington 2005)

    Google Scholar 

  113. A.M. Howard, E.W. Tunstel: Intelligence for Space Robotics (TSI, San Antonio 2006)

    Google Scholar 

  114. T.B. Sheridan: Space teleoperation through time delay: Review and prognosis, IEEE Trans. Robotics Autom. 9(5), 592–606 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Yoshida .

Editor information

Editors and Affiliations

Video-References

Video-References

:

DLR ROTEX: The first remotely controlled space robot available from http://handbookofrobotics.org/view-chapter/55/videodetails/330

:

DLR predictive simulation compensating 6 seconds round-trip delay available from http://handbookofrobotics.org/view-chapter/55/videodetails/331

:

DLR GETEX manipulation experiments on ETSVII available from http://handbookofrobotics.org/view-chapter/55/videodetails/332

:

DLR ROKVISS animation available from http://handbookofrobotics.org/view-chapter/55/videodetails/333

:

DLR ROKVISS camera images pulling spring available from http://handbookofrobotics.org/view-chapter/55/videodetails/334

:

DLR ROKVISS disassembly available from http://handbookofrobotics.org/view-chapter/55/videodetails/336

:

DLR telepresence demo remove cover available from http://handbookofrobotics.org/view-chapter/55/videodetails/337

:

DLR telepresence demo with time delay available from http://handbookofrobotics.org/view-chapter/55/videodetails/338

:

DLR DEOS demonstration mission simulation available from http://handbookofrobotics.org/view-chapter/55/videodetails/339

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshida, K., Wilcox, B., Hirzinger, G., Lampariello, R. (2016). Space Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics