Skip to main content

Robotics in Hazardous Applications

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (GlossaryTerm

EOD

) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

AP:

antipersonnel

ASM:

advanced servomanipulator

AT:

anti-tank mine

AV:

anti-vehicle

CB:

cluster bomb

CEA:

Commissariat à l’Énergie Atomique

D&D:

deactivation and decommissioning

EMS:

electrical master–slave manipulator

EOD:

explosive ordnance disposal

GICHD:

Geneva International Centre for Humanitarian Demining

GPS:

global positioning system

HD:

high definition

HMD:

head-mounted display

HSTAMIDS:

handheld standoff mine detection system

ICBL:

International Campaign to Ban Landmines

IED:

improvised explosive device

MACA:

Afghanistan Mine Action Center

MEMS:

microelectromechanical system

MR:

magnetorheological

MSM:

master–slave manipulator

NASA:

National Aeronautics and Space Agency

ROV:

remotely operated vehicle

RRSD:

Robotics and Remote Systems Division

SNS:

spallation neutron source

TNT:

trinitrotoluene

TSEE:

teleoperated small emplacement excavator

UAV:

unmanned aerial vehicle

UXO:

unexploded ordnance

References

  1. S. Kang, C. Cho, J. Lee, D. Ryu, C. Park, K.-C. Shin, M. Kim: ROBHAZ-DT2: Design and integration of passive double tracked mobile manipulator system for explosive ordnance disposal, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2003)

    Google Scholar 

  2. A. Kron, G. Schmidt, B. Petzold, M.I. Zah, P. Hinterseer, E. Steinbach: Disposal of explosive ordnances by use of a bimanual haptic telepresence system, IEEE Int. Conf. Robotics Autom. (2004)

    Google Scholar 

  3. W.R. Hamel, R.L. Cress: Elements of Telerobotics Necessary for Waste Clean Up Automation, IEEE Int. Conf. Robotics Autom. (2001)

    Google Scholar 

  4. J.C. Ralston, D.W. Hainsworth, D.C. Reid, D.L. Anderson, R.J. McPhee: Recent advances in remote coal mining machine sensing, guidance, teleoperation and field robotics, Robotica 19(5), 513–526 (2001)

    Article  Google Scholar 

  5. GICHD: A Study of Manual Mine Clearance (International Centre for Humanitarian Demining, Geneva 2005)

    Google Scholar 

  6. GICHD: A Study of Mechanical Application in Demining (Generva International Centre for Humanitarian Demining, Geneva 2004)

    Google Scholar 

  7. J.P. Trevelyan, S. Tilli, B. Parks, H.C. Teng: Farming minefields: Economics of remediating land with moderate landmine and UXO concentrations, Demining Technol. Inform. Forum J. 1(3), (2002)

    Google Scholar 

  8. C.G. Bruschini, B. Gross: A survey on sensor technology for landmine detection, J. Mine Action 2(1),(1998)

    Google Scholar 

  9. A. Göth, I.G. McLean, J.P. Trevelyan: How do dogs detect landmines? A summary of research results. In: Mine Detection Dogs: Training, Operations and Odour Detection, ed. by I.G. McLean (Geneva International Centre for Humanitarian Demining, Geneva 2003)

    Google Scholar 

  10. S. Havlik: A modular concept of the robotic vehicle for demining operations, Autonom. Robots 18(3), 253–262 (2005)

    Article  Google Scholar 

  11. J.P. Wetzel: Robotic applications in humanitarian demining, Proc. 9th Bienn. Conf. Eng. Constr. Oper. Chall. Environ. Earth Sp. (2004)

    Google Scholar 

  12. R. Bogue: Detecting mines and IEDs: What are the prospects for robots?, Ind. Robot 38(5), 456–460 (2011)

    Article  MathSciNet  Google Scholar 

  13. J.P. Trevelyan: A suspended device for humanitarian demining, EUREL Int. Conf. Detect. Abandoned Land Mines Humanit. Imperative Seek. Tech. Solut. (1996)

    Google Scholar 

  14. J. Trevelyan: Robots: A premature solution for the land mine problem, Proc. 8th Int. Symp. Robotics Res. (1998)

    Google Scholar 

  15. J.-D. Nicoud: Vehicles and robots for humanitarian demining, Ind. Robot 24(2), 164–168 (1997)

    Article  Google Scholar 

  16. J.P. Trevelyan: Landmine research: Technology solutions looking for problems, Proc. SPIE Detect. Remediat. Technol. Mines Minelike Targets IX (2004)

    Google Scholar 

  17. H.M. Choset, E.U. Acar, A.A. Rizzi, J.E. Luntz: Sensor-based planning: exact cellular decompositions in terms of critical points, Proc. SPIE Mobile Robots XV Telemanip. Telepresence Technol. VII (2000)

    Google Scholar 

  18. Y. Zhang, M. Schervish, E.U. Acar, H. Choset: Probabilistic methods for robotic landmine search, Proc. RSJ/IEEE Int. Conf. Intell. Robots Syst. (2001)

    Google Scholar 

  19. S. Singh, S. Thayer: Inspired by immunity, Nature 415, 468–470 (2002)

    Article  Google Scholar 

  20. S. Sathyanath, F. Sahin: Application of artificial immune system based intelligent multi agent model to a mine detection problem, IEEE Int. Conf. Syst. Man Cybern. (2002)

    Google Scholar 

  21. D. Goldberg, M.J. Mataric: Maximizing reward in a non-stationary mobile robot environment, Autonom. Agents Multi-Agent Syst. 6(3), 287–316 (2003)

    Article  Google Scholar 

  22. R.A. Russell: Locating underground chemical sources by tracking chemical gradients in 3 dimensions, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004)

    Google Scholar 

  23. D.C. Conner, P.R. Kedrowski, C.F. Reinholtz, J.S. Bay: Improved dead reckoning using caster wheel sensing on a differentially steered three-wheeled autonomous vehicle, Proc. SPIE Mobile Robots XV Telemanip. Telepresence Technol. VII (2000)

    Google Scholar 

  24. S.-D. Kim, C.-H. Lee, S.-J. Yoon, H.-K. Jeong, S.-C. Kang, M.-S. Kim, Y.-K. Kwak: Variable configuration tracked mobile robot for demining operations, ASME Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. (2004)

    Google Scholar 

  25. K. Nonami, R. Yuasa, D. Waterman, S. Amano, H. Ono: Preliminary design and feasibility study of a 6-degree of freedom robot for excavation of unexploded landmine, Autonom. Robots 18(3), 293–301 (2005)

    Article  Google Scholar 

  26. Y.-J. Lee, S. Hirose: Three-legged walking for fault-tolerant locomotion of demining quadruped robots, Adv. Robotics 16(5), 415–426 (2002)

    Article  Google Scholar 

  27. T. Wojtara, K. Nonami, H. Shao, R. Yuasa, S. Amano, D. Waterman, Y. Nobumoto: Hydraulic master-slave land mine clearance robot hand controlled by pulse modulation, Mechatronics 15(5), 589–609 (2005)

    Article  Google Scholar 

  28. N. Furihata, S. Hirose: Development of mine hands: Extended prodder for protected demining operation, Autonom. Robots 18(3), 337–350 (2005)

    Article  Google Scholar 

  29. P. Debenest, E.F. Fukushima, Y. Tojo, S. Hirose: A new approach to humanitarian demining: Part 2: Development and analysis of pantographic manipulator, Autonom. Robots 18(3), 323–336 (2005)

    Article  Google Scholar 

  30. H. Yabushita, M. Kanehama, Y. Hirata, K. Kosuge: 3-D ground adaptive synthetic aperture radar for landmine detection, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005)

    Google Scholar 

  31. A.A. Faust, R.H. Chesney, Y. Das, J.E. McFee, K.L. Russel: Canadian teleoperated landmine detection systems. Part I: The improved landmine detection project, Int. J. Syst. Sci. 36(9), 511–528 (2005)

    Article  MATH  Google Scholar 

  32. A.A. Faust, R.H. Chesney, Y. Das, J.E. McFee, K.L. Russel: Canadian teleoperated landmine detection systems. Part II: Antipersonnel landmine detection, Int. J. Syst. Sci. 36(9), 529–543 (2005)

    Article  MATH  Google Scholar 

  33. K.N. Zachery, G.M. Schultz, L.M. Collins: Force protection demining system (FPDS) detection subsystem, Proc. SPIE Detect. Remediat. Technol. Mines Minelike Targets X (2005)

    Google Scholar 

  34. J. Coronado-Vergara, G. Avina-Cervantes, M. Devy, C. Parra: Towards landmine detection using artificial vision, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2005)

    Google Scholar 

  35. J.P. Trevelyan: Demining Research at the University of Western Australia, http://www.mech.uwa.edu.au/jpt/demining (Univ. Western Australia, Perth 2000)

  36. S. Rajasekharan, C. Kambhampati: The current opinion on the use of robots for landmine detection, IEEE Int. Conf. Robotics Autom. (2003)

    Google Scholar 

  37. J.P. Trevelyan: Reducing Accidents in Demining: Achievements in Afghanistan, J. Mine Action 1, 10–17 (2000)

    Google Scholar 

  38. T. Lardner (Ed.): A Study of Manual Mine Clearance: Part 4 – Risk Assessment and Risk Management (Geneva International Centre for Humanitarian Demining, Geneva 2005)

    Google Scholar 

  39. P. Newnham, D. Daniels: The market for advanced humanitarian mine detectors, Proc. SPIE Detect. Remediat. Technol. Mines Minelike Targets VI (2001)

    Google Scholar 

  40. J. Vertut, P. Coiffet: Teleoperation and robotics, evolution and development, Robot Technol. 3A, 302–307 (1985)

    Google Scholar 

  41. L.I. Slutski: Remote Manipulation Systems: Quality Evaluation and Improvement (Kluwer, Dordrecht 1998)

    Book  Google Scholar 

  42. K.F. Kraiss: Advanced Man–Machine Interaction: Fundamentals and Implementation (Springer, Berlin, Heidelberg 2006)

    Book  Google Scholar 

  43. E.G. Johnsen, W.R. Corliss: Human Factors Applications in Teleoperator Design and Operation (Wiley, New York 1971)

    Google Scholar 

  44. T.B. Sheridan: Telerobotics, Automation, and Human Supervisory Control, Technology and Industrial Arts (MIT Press, Cambridge 1992) p. 432

    Google Scholar 

  45. W.R. Hamel: Sensor-based planning and control in telerobotics. In: Control in Robotics and Automation, Sensor-Based Integration, ed. by B.K. Ghosh, N. Xi, T.J. Tarn (Academic, New York 1999) pp. 285–309

    Chapter  Google Scholar 

  46. J.V. Draper: Effects of force reflection on servomanipulator performance, Int. Top. Meet. Robotics Remote Handl. Hostile Environ. (1987)

    Google Scholar 

  47. R. Goertz: Manipulator system development at ANL, 12th Conf. Remote Syst. Technol. (1962)

    Google Scholar 

  48. R. Goertz: Some work on manipulator systems at ANL, past, present and a look at the future, Sem. Remot. Oper. Spec. Equip. (1964)

    Google Scholar 

  49. D.P. Kuban, H.L. Martin: An advanced remotely maintainable servomanipulator concept, Natl. Top. Meet. Robotics Remote Handl. Hostile Environ. (1984)

    Google Scholar 

  50. D. Sands: Cost effective robotics in the nuclear industry, Ind. Robot 33(3), 170–173 (2006)

    Article  Google Scholar 

  51. S. Sanders: Remote operations for fusion using teleoperation, Ind. Robot 33(3), 174–177 (2006)

    Article  Google Scholar 

  52. B.L. Luk, K.P. Liu, A.A. Collie, D.S. Cooke, S. Chen: Teleoperated climbing and mobile service robots for remote inspection and maintenance in nuclear industry, Ind. Robot 33(3), 194–204 (2006)

    Article  Google Scholar 

  53. P. Desbats, F. Geffard, G. Piolain, A. Coudray: Force-feedback teleoperation of an industrial robot in a nuclear spent fuel reprocessing plant, Ind. Robot 33(3), 178–186 (2006)

    Article  Google Scholar 

  54. B. De Jong, E. Faulring, J.E. Colgate, M. Peshkin, H. Kang, Y.S. Park, T. Ewing: Lessons learned from a novel teleoperation testbed, Ind. Robot 33(3), 187–193 (2006)

    Article  Google Scholar 

  55. M. Rennich, E. Bradley, T. Burgess, V. Graves: Spallation neutron source remote handling implementation, 1st Jt. Emerg. Prep. Response/Robotics Remote Syst. Top. Meet. (2006)

    Google Scholar 

  56. S. Kawatsuma, M. Fukushima, T. Okada: Emergency response by robots to Fukushima-Daiichi accident: Summary and lessons learned, Ind. Robot 39(5), 428–435 (2012)

    Article  Google Scholar 

  57. S. Hirose, H. Kuwahara, Y. Wakabayashi, N. Yoshioka: The Mobility Design Concepts/Characteristics and Ground Testing of an Offset-Wheel Rover Vehicle, Int. Conf. Mobile Planet. Robots Rover Roundup (1997)

    Google Scholar 

  58. T. Kagiwada: Robot design for stair navigation, Jpn. Soc. Mech. Eng. Int. J. C 39(3), 629–635 (1996)

    Google Scholar 

  59. R. Volpe, R. Ohm, R. Petras, J. Welch, J. Blaram, R. Ivlev: A prototype manipulation system for Mars rover, IEEE/RSJ Int. Conf. Intell. Robots Syst. (1997)

    Google Scholar 

  60. R. Siegwart, P. Lamon, T. Estier, M. Lauria, R. Piguet: Innovative design for wheeled locomotion in rough terrain, Robot. Autonom. Syst. 40, 151–162 (2002)

    Article  Google Scholar 

  61. K. Yoneda, Y. Ota, S. Hirose: Development of a hi-grip stair climbing crawler with hysteresis compliant blocks, 4th Int. Conf. Climbing Walk. Robots (CLAWAR) (2001)

    Google Scholar 

  62. S. Hirose, T. Sensu, S. Aoki: The TAQT carrier: A practical terrain-adaptive quadru-track carrier robot, IEEE/RSJ Int. Conf. Intell. Robots Syst. (1992)

    Google Scholar 

  63. H. Schempf, E. Mutschler, C. Piepgras, J. Warwick, B. Chemel, S. Boehmke, W. Crowley, R. Fuchs, J. Guyot: Pandora: Autonomous Urban Robotic Reconnaissance System, IEEE Int. Conf. Robotics Autom. (1999)

    Google Scholar 

  64. J.B. Coughlan: Small All Terrain Mobile Robot (Remo Tec, Clinton 1991)

    Google Scholar 

  65. T. Takayama, S. Hirose: Development of Souryu-I connected crawler vehicle for inspection of narrow and winding space, 26th Annu. Conf. IEEE Ind. Electron. Soc. (2000)

    Google Scholar 

  66. C.H. Cho, W.S. Lee, S. Kang, M.S. Kim, J.B. Song: Rough-terrain negotiable mobile platform with passively adaptive double-tracks and its application to rescue missions, Adv. Robotics 19(4), 459–475 (2005)

    Article  Google Scholar 

  67. K. Kato, S. Hirose: Development of the quadruped walking robot, TITAN-IX-mechanical design concept and application for the humanitarian de-mining robot, Adv. Robotics 15(2), 191–204 (2001)

    Article  Google Scholar 

  68. iRobot Inc.: http://www.irobot.com/

  69. E. Cheung, V.J. Lumelsky: Proximity sensing in robot manipulator motion planning: System and implementation issues, IEEE Trans. Robot. Autom. 5, 740–751 (1989)

    Article  Google Scholar 

  70. B.R. Shetty, M.H. Ang Jr.: Active compliance control of a PUMA 560 robot, IEEE Int. Conf. Robotics Autom. (1996)

    Google Scholar 

  71. B.-S. Kim, S.-K. Yun, S. Kang, C.-S. Hwang, M.-S. Kim, J.-B. Song: Development of a joint torque sensor fully integrated with an actuator, Int. Conf. Control Autom. Syst. (2005)

    Google Scholar 

  72. M. Uebel, M.S. Ali, I. Minis: The Effect of Bandwidth on Telerobot System Performance (Goddard Spaceflight Center, Greenbelt 1991)

    Google Scholar 

  73. G. Niemeyer: Telemanipulation with time delays, Int. J. Robotics Res. 23(9), 873–890 (2004)

    Article  Google Scholar 

  74. D. Ryu, S. Kang, M. Kim, J.-B. Song: Multi-modal user interface for teleoperation of ROBHAZ-DT2 field robot system, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004)

    Google Scholar 

  75. A.K. Skula, A.S. Arico, V. Antonucci: An appraisal of electric automobile power sources, Renew. Sustain. Energy Rev. 5, 137–155 (2001)

    Article  Google Scholar 

  76. K.W. Ong, G. Seet, S.K. Sim: Sharing and trading in a human-robot system. In: Cutting Edge Robotics, ed. by V. Kordic, A. Lazinica, M. Merdan (pro literatur, Augsburg 2005) pp. 467–496

    Google Scholar 

  77. J. Trevelyan: Redefining robotics for the new millennium, Int. J. Robotics Res. 18(12), 1211–1223 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Trevelyan .

Editor information

Editors and Affiliations

Video-References

Video-References

:

UNMACCA: Demining Afghanistan available from http://handbookofrobotics.org/view-chapter/58/videodetails/571

:

IED hunters available from http://handbookofrobotics.org/view-chapter/58/videodetails/572

:

Bozena 5 remotely operated robot vehicle available from http://handbookofrobotics.org/view-chapter/58/videodetails/574

:

DALMATINO available from http://handbookofrobotics.org/view-chapter/58/videodetails/575

:

PT-400 D:Mine available from http://handbookofrobotics.org/view-chapter/58/videodetails/576

:

DIGGER DTR demining destroying anti-tank mines available from http://handbookofrobotics.org/view-chapter/58/videodetails/577

:

Remote-control heavy equipment used in debris removal at Fukushima reactor 3 available from http://handbookofrobotics.org/view-chapter/58/videodetails/578

:

iRobots used to examine interior of Fukushima powerplant available from http://handbookofrobotics.org/view-chapter/58/videodetails/579

:

iRobots inspecting interior of Fukushima powerplant available from http://handbookofrobotics.org/view-chapter/58/videodetails/580

:

Robot being used to carry vacuum cleaner head at Fukishima powerplant available from http://handbookofrobotics.org/view-chapter/58/videodetails/581

:

Views of robot control screen – inspecting Fukushima power plant available from http://handbookofrobotics.org/view-chapter/58/videodetails/582

:

Promotional video of robot for cleaning up Fukushima available from http://handbookofrobotics.org/view-chapter/58/videodetails/583

:

Sukura robot developed for reconnaissance missions inside nuclear reactor buildings available from http://handbookofrobotics.org/view-chapter/58/videodetails/584

:

HD Stock Footage 1950s atomic power plants – nuclear reactors available from http://handbookofrobotics.org/view-chapter/58/videodetails/586

:

Radioactive material handling 1954 available from http://handbookofrobotics.org/view-chapter/58/videodetails/587

:

Nuclear manipulator remote handling equipment (1960) available from http://handbookofrobotics.org/view-chapter/58/videodetails/588

:

1961 nuclear reactor meltdown: The SL-1 accident – United States Army Documentary available from http://handbookofrobotics.org/view-chapter/58/videodetails/589

:

Jean Vertut master-slave manipulator arms available from http://handbookofrobotics.org/view-chapter/58/videodetails/590

:

NanoMag magnetic crawler for remote inspection available from http://handbookofrobotics.org/view-chapter/58/videodetails/591

:

Remote handling and inspection with the VT450 available from http://handbookofrobotics.org/view-chapter/58/videodetails/592

:

Robots answer nuclear waste challenges at SRS available from http://handbookofrobotics.org/view-chapter/58/videodetails/593

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trevelyan, J., Hamel, W.R., Kang, SC. (2016). Robotics in Hazardous Applications. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics