Skip to main content

Humanoids

  • Chapter
  • First Online:
Springer Handbook of Robotics

Abstract

Humanoid robots selectively immitate aspects of human form and behavior. Humanoids come in a variety of shapes and sizes, from complete human-size legged robots to isolated robotic heads with human-like sensing and expression. This chapter highlights significant humanoid platforms and achievements, and discusses some of the underlying goals behind this area of robotics. Humanoids tend to require the integration of many of the methods covered in detail within other chapters of this handbook, so this chapter focuses on distinctive aspects of humanoid robotics with liberal cross-referencing.

This chapter examines what motivates researchers to pursue humanoid robotics, and provides a taste of the evolution of this field over time. It summarizes work on legged humanoid locomotion, whole-body activities, and approaches to human–robot communication. It concludes with a brief discussion of factors that may influence the future of humanoid robots.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

ACT:

anatomically correct testbed

AI:

artificial intelligence

AIST:

National Institute of Advanced Industrial Science and Technology (Japan)

AMD:

autonomous mental development

BFP:

best-first-planner

CG:

computer graphics

COG:

center of gravity

COM:

center of mass

CWS:

contact wrench sum

DARPA:

Defense Advanced Research Projects Agency

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

DOF:

degree of freedom

FPGA:

field-programmable gate array

GUI:

graphical user interface

GZMP:

generalized ZMP

HRP:

humanoid robotics project

NASA:

National Aeronautics and Space Agency

OKR:

optokinetic response

QP:

quadratic programming

QRIO:

quest for curiosity

R.U.R.:

Rossum’s Universal Robots

RMC:

resolved momentum control

RRT:

rapidly exploring random tree

TV:

television

VOR:

vestibular-ocular reflex

WABIAN:

Waseda bipedal humanoid

WABOT:

Waseda robot

ZMP:

zero moment point

References

  1. H. Inoue, S. Tachi, Y. Nakamura, K. Hirai, N. Ohyu, S. Hirai, K. Tanie, K. Yokoi, H. Hirukawa: Overview of humanoid robotics project of METI, Proc. 32nd Int. Symp. Robotics (ISR) (2001)

    Google Scholar 

  2. Y. Kuroki, M. Fujita, T. Ishida, K. Nagasaka, J. Yamaguchi: A small biped entertainment robot exploring attractive applications, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 471–476

    Google Scholar 

  3. C.G. Atkeson, J.G. Hale, F.E. Pollick, M. Riley, S. Kotosaka, S. Schaal, T. Shibata, G. Tevatia, A. Ude, S. Vijayakumar, M. Kawato: Using humanoid robots to study human behavior, IEEE Intell. Syst. 15(4), 46–56 (2000)

    Article  Google Scholar 

  4. K.F. MacDorman, H. Ishiguro: The uncanny advantage of using androids in social and cognitive science research, Interact. Stud. 7(3), 297–337 (2006)

    Article  Google Scholar 

  5. V. Bruce, A. Young: In the Eye of the Beholder: The Science of Face Perception (Oxford Univ. Press, Oxford 1998)

    Google Scholar 

  6. R. Blake, M. Shiffrar: Perception of human motion, Annu. Rev. Psychol. 58, 47–73 (2007)

    Article  Google Scholar 

  7. J.F. Werker, R.C. Tees: Influences on infant speech processing: Toward a new synthesis, Annu. Rev. Psychol. 50, 509–535 (1999)

    Article  Google Scholar 

  8. D. Hanson, A. Olney, I.A. Pereira, M. Zielke: Upending the uncanny valley, Nat. Conf. Artif. Intell. (AAAI), Pittsburgh (2005)

    Google Scholar 

  9. K. Čapek: R.U.R. (Rossum's Universal Robots), A Play in Introductory Scene and Three Acts (eBooks, Adelaide 2006), translated into English by D. Wyllie

    Google Scholar 

  10. Metropolis, directed by Fritz Lang (DVD) (Kino Video, 1927)

    Google Scholar 

  11. I. Asimov: The Caves of Steel (Bantam, New York 1954)

    Google Scholar 

  12. B. Adams, C. Breazeal, R.A. Brooks, B. Scassellati: Humanoid robots: A new kind of tool, IEEE Intell. Syst. 15(4), 25–31 (2000)

    Article  Google Scholar 

  13. R.A. Brooks, L.A. Stein: Building brains for bodies, Auton. Robotics 1(1), 7–25 (1994)

    Article  Google Scholar 

  14. R.W. Gibbs Jr.: Embodiment and Cognitive Science (Cambridge Univ. Press, Cambridge 2006)

    Google Scholar 

  15. M. Lungarella, G. Metta: Beyond gazing, pointing, and reaching: A survey of developmental robotics, Proc. Third Int. Workshop Epigenet. Robotics (2003) pp. 81–89

    Google Scholar 

  16. G. Metta, G. Sandini, D. Vernon, D. Caldwell, N. Tsagarakis, R. Beira, J. Santos-Victor, A. Ijspeert, L. Righetti, G. Cappiello, G. Stellin, F. Becchi: The RobotCub project – An open framework for research in embodied cognition, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2005)

    Google Scholar 

  17. E. Grandjean, K. Kroemer: Fitting the Task to the Human, 5th edn. (Routledge, London 1997)

    Google Scholar 

  18. W. Karwowski: International Encyclopedia of Ergonomics and Human Factors, 2nd edn. (CRC, Boca Raton 2006)

    Google Scholar 

  19. R. Brooks, L. Aryananda, A. Edsinger, P. Fitzpatrick, C. Kemp, U.-M. O'Reilly, E. Torres-Jara, P. Varshavskaya, J. Weber: Sensing and manipulating built-for-human environments, Int. J. Humanoid Robotics 1(1), 1–28 (2004)

    Article  Google Scholar 

  20. W. Bluethmann, R. Ambrose, M. Diftler, S. Askew, E. Huber, M. Goza, F. Rehnmark, C. Lovchik, D. Magruder: Robonaut: A robot designed to work with humans in space, Auton. Robotics 14(2/3), 179–197 (2003)

    Article  MATH  Google Scholar 

  21. K. Yokoi, K. Nakashima, M. Kobayashi, H. Mihune, H. Hasunuma, Y. Yanagihara, T. Ueno, T. Gokyuu, K. Endou: A tele-operated humanoid operator, Int. J. Robotics Res. 22(5/6), 593–602 (2006)

    Article  Google Scholar 

  22. K. Yokoi, K. Kawauchi, N. Sawasaki, T. Nakajima, S. Nakamura, K. Sawada, T. Takeuchi, K. Nakashima, Y. Yanagihara, K. Yokohama, T. Isozumi, Y. Fukase, K. Kaneko, H. Inoue: Humanoid robot applications in HRP, Int. J. Humanoid Robotics 1(3), 409–428 (2004)

    Article  Google Scholar 

  23. B. Thibodeau, P. Deegan, R. Grupen: Static analysis of contact forces with a mobile manipulator, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 4007–4012

    Google Scholar 

  24. J. Gutman, M. Fukuchi, M. Fujita: Modular architecture for humanoid robot navigation, Proc. 5th IEEE/RAS Int. Conf. Humanoid Robotics (2005) pp. 26–31

    Google Scholar 

  25. S. Nakaoka, A. Nakazawa, K. Yokoi, H. Hirukawa, K. Ikeuchi: Generating whole body motions for a biped humanoid robot from captured human dances, IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3905–3910

    Google Scholar 

  26. Boston Dynamics: http://www.bostondynamics.com (2013)

  27. M.E. Rosheim: Robot Evolution: The Development of Anthrobotics (Wiley, New York 1994)

    Google Scholar 

  28. M.E. Rosheim: Leonardo's Lost Robots (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  29. T.N. Hornyak: Loving the Machine: The Art and Science of Japan's Robots (MIT Press, Cambridge 2006)

    Google Scholar 

  30. J. Surrell: Pirates of the Caribbean: From the Magic Kingdom to the Movies (Disney, New York 2005)

    Google Scholar 

  31. K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka: The development of Honda humanod robot, IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 1321–1326

    Google Scholar 

  32. M. Williamson: Robot Arm Control Exploiting Natural Dynamics, Ph.D. Thesis (MIT, Cambridge 1999)

    Google Scholar 

  33. J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, E. Thelen: Autonomous mental development by robots and animals, Science 291(5504), 599–600 (2001)

    Article  Google Scholar 

  34. J. Zlatev, C. Balkenius: Why ”epigenetic robotics”?, Proc. 1st Int. Workshop Epigenet. Robotics Model. Cogn. Dev. Robotics Syst., ed. by C. Balkenius, J. Zlatev, H. Kozima, K. Dautenhahn, C. Breazeal (Lund Univ. Press, Lund 2001) pp. 1–4

    Google Scholar 

  35. Y. Sodeyama, I. Mizuuchi, T. Yoshikai, Y. Nakanishi, M. Inaba: A shoulder structure of muscle-driven humanoid with shoulder blades, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2005) pp. 4028–4033

    Google Scholar 

  36. I. Mizuuchi, M. Inaba, H. Inoue: A flexible spine human-form robot-development and control of the posture of the spine, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS), Vol. 4 (2001) pp. 2099–2104

    Google Scholar 

  37. M. Vande Weghe, M. Rogers, M. Weissert, Y. Matsuoka: The ACT hand: Design of the skeletal structure, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004)

    Google Scholar 

  38. L.Y. Chang, Y. Matsuoka: A kinematic thumb model for the ACT hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1000–1005

    Google Scholar 

  39. C. Lovchik, M.A. Diftler: The robonaut hand: A dexterous robot hand for space, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 907–912

    Google Scholar 

  40. M.J. Marjanović: Teaching an Old Robot New Tricks: Learning Novel Tasks via Interaction with People and Things, Ph.D. Thesis (MIT, Cambridge 2003)

    Google Scholar 

  41. C. Ott, O. Eiberger, W. Friedl, B. Bäuml, U. Hillenbrand, C. Borst, A. Albu-Schäffer, B. Brunner, H. Hirschmüller, S. Kielhöfer, R. Konietschke, M. Suppa, T. Wimböck, F. Zacharias, G. Hirzinger: A humanoid two-arm system for dexterous manipulation, Proc. IEEE-RAS Int. Conf. Humanoid Robot. (2006) pp. 276–283

    Google Scholar 

  42. G. Pratt, M. Williamson: Series elastic actuators, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), Pittsburg, Vol. 1 (1995) pp. 399–406

    Google Scholar 

  43. M. Vukobratović, J. Stepanenko: On the stability of anthropomorphic systems, Math. Biosci. 15, 1–37 (1972)

    Article  MATH  Google Scholar 

  44. M. Morisawa, K. Harada, S. Kajita, S. Nakaoka, K. Fujiwara, F. Kanehiro, K. Kaneko, H. Hirukawa: Experimentation of humanoid walking allowing immediate modification of foot place based on analytical solution, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 3989–3994

    Google Scholar 

  45. K. Nishiwaki, S. Kagami: High frequency walking pattern generation based on preview control of ZMP, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 2667–2672

    Google Scholar 

  46. K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi, H. Hirukawa: Real-time planning of humanoid robot's gait for force controlled manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 616–622

    Google Scholar 

  47. J. Urata, K. Nshiwaki, Y. Nakanishi, K. Okada, S. Kagami, M. Inaba: Online walking pattern generation for push recovery and minimum delay to commanded change of direction and speed, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 3411–3416

    Google Scholar 

  48. J. Chestnutt, M. Phillipe, J.J. Kuffner, T. Kanade: Locomotion among dynamic obstacles for the honda ASIMO, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2007) pp. 2572–2573

    Google Scholar 

  49. K. Nishiwaki, J. Chestnutt, S. Kagami: Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor, Int. J. Robotics Res. 31(11), 1251–1262 (2012)

    Article  Google Scholar 

  50. K. Nagasaka, K. Kuroki, S. Suzuki, Y. Itoh, J. Yamaguchi: Integrated motion control for walking, jumping and running on a small bipedal entertainment robot, IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 3189–3194

    Google Scholar 

  51. B.-K. Cho, S.-S. Park, J.-H. Oh: Stabilization of a hopping humanoid robot for a push, Proc. Int. Conf. Humanoid Robots (Humanoids) (2010) pp. 60–65

    Google Scholar 

  52. R. Tajima, D. Honda, K. Suga: Fast running experiments involving a humanoid robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 1571–1576

    Google Scholar 

  53. H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, M. Morisawa: A universal stability criterion of the foot contact of legged robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1976–1983

    Google Scholar 

  54. S.-H. Hyon, G. Cheng: Disturbance rejection for biped humanoids, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 2668–2675

    Google Scholar 

  55. K. Miura, M. Morisawa, F. Kanehiro, S. Kajita, K. Kaneko, K. Yokoi: Human-like walking with toe supporting for humanoids, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 4428–4435

    Google Scholar 

  56. S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro, K. Yokoi: Biped Walking stabilization based on linear inverted pendulum tracking, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 4489–4496

    Google Scholar 

  57. S.H. Collins, A.L. Ruina, R. Tedrake, M. Wisse: Efficient bipedal robots based on passive-dynamic walkers, Science 307, 1082–1085 (2005)

    Article  Google Scholar 

  58. K. Bouyarmane, A. Kheddar: Multi-contact stances planning for multiple agents, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 5353–5546

    Google Scholar 

  59. K. Fujiwara, F. Kanehiro, S. Kajita, K. Kaneko, K. Yokoi, H. Hirukawa: UKEMI: Falling motion control to minimize damage to biped humanoid robot, IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 2521–2526

    Google Scholar 

  60. H. Hirukawa, S. Kajita, F. Kanehiro, K. Kaneko, T. Isozumi: The human-size humanoid robot that can walk, lie down and get up, Int. J. Robotics Res. 24(9), 755–769 (2005)

    Article  Google Scholar 

  61. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura: The intelligent ASIMO: System overview and integration, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2002) pp. 2478–2483

    Google Scholar 

  62. K. Okada, S. Kagami, M. Inaba, H. Inoue: Plane segment finder: Algorithm implementation and applications, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 2120–2125

    Google Scholar 

  63. K. Sabe, M. Fukuchi, J.-S. Gutmann, T. Ohashi, K. Kawamoto, T. Yoshigahara: Obstacle avoidance and path planning for humanoid robots using stereo vision, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004)

    Google Scholar 

  64. J. Gutman, M. Fukuchi, M. Fujita: Real-time path planning for humanoid robot navigation, Proc. Int. Jt. Conf. Artif. Intell. (2005) pp. 1232–1238

    Google Scholar 

  65. K. Harada, S. Kajita, K. Kaneko, H. Hirukawa: Pushing manipulation by humanoid considering two-kinds of ZMPs, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 1627–1632

    Google Scholar 

  66. K. Harada, S. Kajita, K. Kaneko, H. Hirukawa: Dynamics and balance of a humanoid robot during manipulation tasks, IEEE Trans. Robotics 22-3, 568–575 (2006)

    Article  Google Scholar 

  67. H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, M. Morisawa: A universal stability criterion of the foot contact of legged robots – Adios ZMP, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1976–1983

    Google Scholar 

  68. Y. Hwang, A. Konno, M. Uchiyama: Whole body cooperative tasks and static stability evaluations for a humanoid robot, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2003) pp. 1901–1906

    Google Scholar 

  69. T. Takenaka: Posture control for a legged mobile robot, Jap. Pat. 10230485 (1998)

    Google Scholar 

  70. K. Inoue, H. Yoshida, T. Arai, Y. Mae: Mobile manipulation of humanoids – Real-time control based on manipulability and stability, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 2217–2222

    Google Scholar 

  71. K. Harada, S. Kajita, H. Saito, M. Morisawa, F. Kanehiro, K. Fujiwara, K. Kaneko, H. Hirukawa: A humanoid robot carrying a heavy object, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 1724–1729

    Google Scholar 

  72. T. Takubo, K. Inoue, K. Sakata, Y. Mae, T. Arai: Mobile manipulation of humanoid robots – control method for CoM position with external force, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2004) pp. 1180–1185

    Google Scholar 

  73. D. Kulic, D. Lee, C. Ott, Y. Nakamura: Incremental learning of full body motion primitives for humanoid robots, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2008) pp. 326–332

    Google Scholar 

  74. K. Yamane, S.O. Anderson, J.K. Hodgins: Controlling humanoid robots with human motion data: Experimental validation, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2010) pp. 504–510

    Google Scholar 

  75. J.-H. Oh, J.-W. Heo: Upper body motion interpolation for humanoid robots, Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatro. (AIM) (2011) pp. 1064–1069

    Google Scholar 

  76. S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa, K. Ikeuchi: Task model of lower body motion for a biped humanoid robot to imitate human dances, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2005) pp. 2769–2774

    Google Scholar 

  77. S. Nakaoka, S. Kajita, K. Yokoi: Intuitive and flexible user interface for creating whole body motions of biped humanoid robots, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2010) pp. 1675–1682

    Google Scholar 

  78. S. Nakaoka: Choreonoid: Extensible virtual robot environment built on an integrated GUI framework, Proc. IEEE/SICE Int. Symp. System Integration (SII) (2012) pp. 79–85

    Google Scholar 

  79. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, H. Inoue: Dynamically-stable motion planning for humanoid robots, Auton. Robots 12(1), 105–118 (2002)

    Article  MATH  Google Scholar 

  80. S. Dalibard, A. Nakhaei, F. Lamiraux, J.-P. Laumond: Whole-body task planning for a humanoid robot: a way to integrate collision avoidance, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2009) pp. 355–360

    Google Scholar 

  81. E. Yoshida, C. Esteves, I. Belousov, J.-P. Laumond, T. Sakaguchi, K. Yokoi: Planning 3D collision-free dynamic robotic motion through iterative reshaping, IEEE Trans.Robotics 24(5), 1186–1198 (2008)

    Article  Google Scholar 

  82. K. Harada, Yoshida Ei, K. Yokoi (Eds.): Motion Planning for Humanoid Robots (Springer, Berlin, Heidelberg 2010)

    MATH  Google Scholar 

  83. H. Janßen, M. Gienger, C. Goerick: Task-oriented whole body motion for humanoid robots, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2005) pp. 238–244

    Google Scholar 

  84. K. Okada, M. Kojima, Y. Sagawa, T. Ichino, K. Sato, M. Inaba: Vision based behavior verification system of humanoid robot for daily environment tasks, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2006) pp. 7–12

    Google Scholar 

  85. E. Yoshida, O. Kanoun, C. Esteves, J.-P. Laumond, K. Yokoi: Task-driven support polygon reshaping for humanoids, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2006) pp. 827–832

    Google Scholar 

  86. E. Yoshida, M. Poirier, J.-P. Laumond, O. Kanoun, F. Lamiraux, R. Alami, K. Yokoi: Pivoting based manipulation by a humanoid robot, Auton. Robots 28(1), 77–88 (2010)

    Article  Google Scholar 

  87. O. Kanoun, F. Lamiraux, P.-B. Wieber: Kinematic control of redundant manipulators: Generalizing the task priority framework, IEEE Trans.Robotics 27(4), 785–792 (2011)

    Article  Google Scholar 

  88. E. Neo, K. Yokoi, S. Kajita, K. Tanie: A framework for remote execution of whole body motions for humanoid robots, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2004) pp. 608–626

    Google Scholar 

  89. M. Toussaint, M. Gienger, C. Goerick: Optimization of sequential attractor-based movement for compact behaviour generation, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2007) pp. 122–129

    Google Scholar 

  90. N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, R. Dillmann: Humanoid motion planning for dual-arm manipulation and re-grasping tasks, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2009) pp. 2464–2470

    Google Scholar 

  91. F. Kanehiro, E. Yoshida, K. Yokoi: Efficient reaching motion planning and execution for exploration by humanoid robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 1911–1916

    Google Scholar 

  92. S. Kagami, F. Kanehiro: AutoBalancer: An online dynamic balance compensation scheme for humanoid robots, Workshop Algorithmic Found. Robotics (2000) pp. 79–89

    Google Scholar 

  93. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa: Resolved momentum control: Humanoid motion planning based on the linear and angular momentum, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2003) pp. 1644–1650

    Google Scholar 

  94. K. Yamane, Y. Nakamura: Dynamics filter – concept and implementa tion of online motion generator for human figures, IEEE Trans.Robotics Autom. 19(3), 421–432 (2003)

    Article  Google Scholar 

  95. Jin'ichi Yamaguchi, E. Soga, S. Inoue, A. Takanishi: Development of a bipedal humanoid robot – Control method of whole body cooperative dynamic biped walking, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 368–374

    Google Scholar 

  96. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa: Biped walking pattern generation by using preview control of zero-moment point, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 1620–1626

    Google Scholar 

  97. T. Sugihara, Y. Nakamura: Whole-body cooperative balancing of humanoid robot using COG jacobian, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2002) pp. 2575–2580

    Google Scholar 

  98. H. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi, H. Hirukawa: Real-time planning of humanoid robot's gait for force controlled manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 616–622

    Google Scholar 

  99. H. Harada, S. Kajita, H. Saito, M. Morisawa, F. Kanehiro, K. Fujiwara, K. Kaneko, H. Hirukawa: A Humanoid robot carrying a heavy object, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 1712–1717

    Google Scholar 

  100. M. Stilman, K. Ishiwaki, S. Kagami: Learning object models for whole body manipulation, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2007) pp. 174–179

    Google Scholar 

  101. H. Sugiura, M. Gienger, H. Janssen, C. Goerick: Real-time collision avoidance with whole body motion control for humanoid robots, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2007) pp. 2053–2058

    Google Scholar 

  102. O. Kanoun, J.-P. Laumond, E. Yoshida: Planning foot placements for a humanoid robot: A Problem of Inverse Kinematics, Int. J. Robotics Res. 30(4), 476–485 (2011)

    Article  Google Scholar 

  103. O. Stasse, B. Verrelst, A. Davison, N. Mansard, F. Saidi, B. Vanderborght, C. Esteves, K. Yokoi: Integrating walking and vision to increase humanoid autonomy, Int. J. Humanoid Robotics 5(2), 287–310 (2008)

    Article  Google Scholar 

  104. K. Okada, T. Ogura, A. Haneda, J. Fujimoto, F. Gravot, M. Inaba: Humanoid motion generation system on HRP2-JSK for daily life environment, Proc. IEEE Int. Conf. Mechatron. Autom. (2005) pp. 1772–1777

    Google Scholar 

  105. F. Zacharias, C. Borst, G. Hirzinger: Capturing robot workspace structure: Representing robot capabilities, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2007) pp. 3229–3236

    Google Scholar 

  106. N. Vahrenkamp, E. Kuhn, T. Asfour, R. Dillmann: Planning multi-robot grasping motions, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2010) pp. 593–600

    Google Scholar 

  107. A. Escande, A. Kheddar: Contact planning for acyclic motion with tasks constraints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 435–440

    Google Scholar 

  108. K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, B. Wilcox: Motion planning for legged robots on varied terrain, Int. J. Robotics Res. 27(11-12), 1325–1349 (2008)

    Article  Google Scholar 

  109. L. Saab, N. Mansard, F. Keith, J.-Y. Fourquet, P. Soueres: Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 1091–1096

    Google Scholar 

  110. C. Ott, C. Baumgärtner, J. Mayr, M. Fuchs, R. Burger, D. Lee, O. Eiberger, Alin Albu-Schäffer, M. Grebenstein, G. Hirzinger: Development of a biped robot with torque controlled joints, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2010) pp. 167–173

    Google Scholar 

  111. S. Lengagne, J. Vaillant, E. Yoshida, A. Kheddar: Generation of whole-body optimal dynamic multi-contact motions, Int. J. Robotics Res. 32(9/10), 1104–1119 (2013)

    Article  Google Scholar 

  112. A. Escande, A. Kheddar, S. Miossec: Planning support contact-points for humanoid robots and experiments on HRP-2, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2006) pp. 2974–2979

    Google Scholar 

  113. K. Bouyarmane, A. Kheddar: Humanoid robot locomotion and manipulation step planning, Adv. Robotics 26(10), 1099–1126 (2012)

    Article  Google Scholar 

  114. H. Arisumi, S. Miossec, J.-R. Chardonnet, K. Yokoi: Dynamic lifting by whole body motion of humanoid robots, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2008) pp. 668–675

    Google Scholar 

  115. K. Koyanagi, H. Hirukawa, S. Hattori, M. Morisawa, S. Nakaoka, K. Harada, S. Kajita: A pattern generator of humanoid robots walking on a rough terrain using a handrail, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2008) pp. 2617–2622

    Google Scholar 

  116. L. Sentis, J. Park, O. Khatib: Compliant control of multicontact and center-of-mass behaviors in humanoid robots, IEEE Trans.Robotics 26(3), 483–501 (2010)

    Article  Google Scholar 

  117. J. Park, O. Khatib: Contact consistent control framework for humanoid robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1963–1969

    Google Scholar 

  118. S. Hirose, H. Tsukagoshi, K. Yoneda: Normalized energy stability margin and its contour of walking vehicles on rough terrain, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 181–186

    Google Scholar 

  119. K. Harada, S. Kajita, K. Kaneko, H. Hirukawa: Dynamics and balance of a humanoid robot during manipulation task, IEEE Trans.Robotics 22(3), 568–575 (2006)

    Article  Google Scholar 

  120. H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, M. Morisawa: A universal stability criterion of the foot contact of legged robots – Adios ZMP, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1976–1983

    Google Scholar 

  121. K. Bouyarmane, J. Vaillant, F. Keith, A. Kheddar: Exploring humanoid robots locomotion capabilities in virtual disaster response scenarios, Proc. IEEE/RAS Int. Conf. Humanoid Robotics (2012) pp. 337–342

    Google Scholar 

  122. S.-H. Hyon, J.G. Hale, G. Cheng: Full-body compliant human-humanoid interaction: Balancing in the presence of unknown external forces, IEEE Trans. Robotics 23(5), 884–898 (2007)

    Article  Google Scholar 

  123. K. Bouyarmane, A. Kheddar: Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2011) pp. 4414–4419

    Google Scholar 

  124. C. Breazeal, A. Edsinger, P. Fitzpatrick, B. Scassellati, P. Varchavskaia: Social constraints on animate vision, IEEE Intell. Syst. 15, 32–37 (2000)

    Article  Google Scholar 

  125. F. Berton, G. Sandini, G. Metta: Anthropomorphic visual sensors. In: The Encyclopedia of Sensors, Vol. X, ed. by M.V. Pishko, C.A. Grimes, E.C. Dickey (American Scientific, Stevenson Ranch 2006) pp. 1–16

    Google Scholar 

  126. T. Shibata, S. Vijayakumar, J. Conradt, S. Schaal: Biomimetic oculomotor control, Adapt. Behav. 9, 189–208 (2001)

    Article  Google Scholar 

  127. B. Scassellati: A Binocular, Foveated Active Vision System, Vol. AIM-1628 (MIT, Cambridge 1998)

    Google Scholar 

  128. A. Ude, C. Gaskett, G. Cheng: Foveated vision systems with two cameras per eye, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006)

    Google Scholar 

  129. H. Kozima: Infanoid: A babybot that explores the social environment. In: Socially Intelligent Agents: Creating Relationships with Computers and Robots, ed. by K. Dautenhahn, A.H. Bond, L. Canamero, B. Edmonds (Kluwer, Amsterdam 2002) pp. 157–164

    Chapter  Google Scholar 

  130. T. Shibata, S. Schaal: Biomimetic gaze stabilization based on feedback-error-learning with nonparametric regression networks, Neural Netw. 14(2), 201–216 (2001)

    Article  Google Scholar 

  131. P. Heracleous, S. Nakamura, K. Shikano: Simultaneous recognition of distant-talking speech to multiple talkers based on the 3-D N-best search method, J. VLSI Signal Process. Syst. Arch. 36(2–3), 105–116 (2004)

    Article  Google Scholar 

  132. J. Ido, Y. Matsumoto, T. Ogasawara, R. Nisimura: Humanoid with interaction ability using vision and speech information, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2006)

    Google Scholar 

  133. I. Hara, F. Asano, H. Asoh, J. Ogata, N. Ichimura, Y. Kawai, F. Kanehiro, H. Hirukawa, K. Yamamoto: Robust speech interface based on audio and video information fusion for humanoid HRP-2, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (IROS) (2004) pp. 2402–2410

    Google Scholar 

  134. M. Lungarella, G. Metta, R. Pfeifer, G. Sandini: Developmental robotics: A survey, Connect. Sci. 15(4), 151–190 (2003)

    Article  Google Scholar 

  135. B. Scassellati, C. Crick, K. Gold, E. Kim, F. Shic, G. Sun: Social development, Comput. Intell. Mag. (IEEE) 1(3), 41–47 (2006)

    Article  Google Scholar 

  136. M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino, C. Yoshida: Cognitive developmental robotics: A survey, IEEE Trans. Auton. Mental Dev. 1(1), 12–34 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fitzpatrick .

Editor information

Editors and Affiliations

Video-References

Video-References

:

3-D collision-free motion combining locomotion and manipulation by humanoid robot HRP-2 available from http://handbookofrobotics.org/view-chapter/67/videodetails/594

:

Whole-body pivoting manipulation available from http://handbookofrobotics.org/view-chapter/67/videodetails/595

:

Footstep planning modeled as a whole-body inverse kinematic problem available from http://handbookofrobotics.org/view-chapter/67/videodetails/596

:

Dynamic multicontact motion available from http://handbookofrobotics.org/view-chapter/67/videodetails/597

:

3-D collision-free motion combining locomotion and manipulation by humanoid robot HRP-2 (experiment) available from http://handbookofrobotics.org/view-chapter/67/videodetails/598

:

Regrasp planning for pivoting manipulation by a humanoid robot available from http://handbookofrobotics.org/view-chapter/67/videodetails/599

:

Footstep planning modeled as a whole-body inverse kinematic problem (experiment) available from http://handbookofrobotics.org/view-chapter/67/videodetails/600

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fitzpatrick, P., Harada, K., Kemp, C.C., Matsumoto, Y., Yokoi, K., Yoshida, E. (2016). Humanoids. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics