Abstract
This chapter presents a set of techniques for reconstructing and understanding human motions measured using current motion capture technologies. We first review modeling and computation techniques for obtaining motion and force information from human motion data (Sect. 68.2). Here we show that kinematics and dynamics algorithms for articulated rigid bodies can be applied to human motion data processing, with help from models based on knowledge in anatomy and physiology. We then describe methods for analyzing human motions so that robots can segment and categorize different behaviors and use them as the basis for human motion understanding and communication (Sect. 68.3). These methods are based on statistical techniques widely used in linguistics. The two fields share the common goal of converting continuous and noisy signal to discrete symbols, and therefore it is natural to apply similar techniques. Finally, we introduce some application examples of human motion and models ranging from simulated human control to humanoid robot motion synthesis.

Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 3-D:
-
three-dimensional
- 6-D:
-
six-dimensional
- CAD:
-
computer-aided design
- CHMM:
-
coupled hidden Markov model
- DMP:
-
dynamic movement primitive
- DOF:
-
degree of freedom
- EM:
-
expectation maximization
- EMG:
-
electromyography
- HHMM:
-
hierarchical hidden Markov model
- HMM:
-
hidden Markov model
- RNN:
-
recurrent neural network
- SAI:
-
simulation and active interfaces
References
M.J. Mataric: Getting humaniods to move and imitate, IEEE Intell. Syst. 15(4), 18–24 (2000)
S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa, H. Hirukawa, K. Ikeuchi: Learning from observation paradigm: Leg task models for enabling a biped humanoid robot to imitate human dances, Int. J.Robotics Res. 26(8), 829–844 (2010)
Organic Motion, Inc.: OpenStage, http://organicmotion.com/mocap-for-animation
Microsoft: Kinect for Xbox One, http://www.xbox.com/en-US/xbox-one/accessories/kinect-for-xbox-one
M. Vondrak, L. Sigal, J. Hodgins, O. Jenkins: Video-based 3D motion capture through biped control, ACM Trans. Graph. 31(4), 24 (2012)
Y. Nakamura, K. Yamane, Y. Fujita, I. Suzuki: somatosensory computation for man-machine interface from motion capture data and musculoskeletal human model, IEEE Trans.Robotics 21(1), 58–66 (2005)
K. Yamane, Y. Nakamura: Natural motion animation through constraining and deconstraining at will, IEEE Trans. Vis.Comput. Graph. 9(3), 352–360 (2003)
J.J. Craig: Introduction to Robotics: Mechanics and Control (Addison-Wesley, Reading 1986)
A.V. Hill: The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. Lond. B 126, 136–195 (1938)
S. Stroeve: Impedance chracteristics of a neuro-musculoskeletal model of the human arm I: Posture control, J.Biol. Cyberneics 81, 475–494 (1999)
J. Rasmussen, M. Damsgaard, M. Voigt: Muscle recruitment by the min/max criterion—a comparative study, J.Biomech. 34(3), 409–415 (2001)
K. Yamane, Y. Fujita, Y. Nakamura: Estimation of physically and physiologically valid somatosensory information, Proc.IEEE/RSJ Int. Conf.RoboticsAutom. (ICRA) (2005) pp. 2635–2641
B.W. Mooring, Z.S. Roth, M.R. Driels: Fundamentals of Manipulator Calibration (Wiley, New York 1991)
Digital Human Research Center, AIST: Human Body Properties Database, https://www.dh.aist.go.jp/database/properties/index-e.html
K. Ayusawa, G. Venture, Y. Nakamura: Identification of humanoid robots dynamics using minimal set of sensors, Proc. IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2008) pp. 2854–2859
T. Kim, S.I. Park, S.Y. Shin: Nonmetric individual differences multidimensional scaling: An alternating least squres method with optimal scaling features, ACM Trans.Graph. 22(3), 392–401 (2003)
T. Shiratori, A. Nakazawa, K. Ikeuchi: Detecting dance motion structure through music analysisg, Proc. 6th IEEE Int. Conf.Autom. FaceGesture Recognit. (2004) pp. 857–862
J. Kohlmorgen, S. Lemm: A dynamic HMM for on-line segmentation of sequential data, Proc.Conf.Neural Inf. Process. Syst. (2002) pp. 793–800
D. Kulic, W. Takano, Y. Nakamura: Online segmentation and clustering from continuous observation of whole body motions, IEEE Trans.Robotics 25(5), 1158–1166 (2009)
J.L. Elman: Finding structure in time, Cogn. Sci. 14, 179–211 (1990)
W. Takano, Y. Nakamura: Humanoid robot’s autonomous acquisition of proto-symbols through motion segmentation, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2006) pp. 425–431
A.J. Ijspeert, J. Nakanishi, S. Shaal: Learning control policies for movement imitation and movement recognition, Neural Inf. Process. Syst. 15, 1547–1554 (2003)
M. Haruno, D. Wolpert, M. Kawato: MOSAIC model for sensorimotor learning and control, Neural Comput. 13, 2201–2220 (2001)
T. Inamura, I. Toshima, H. Tanie, Y. Nakamura: Embodied symbol emergence based on mimesis theory, Int. J.Robotics Res. 23(4), 363–377 (2004)
A. Billard, S. Calinon, F. Guenter: Discriminative and adaptive imitation in uni-manual and bi-manual tasks, RoboticsAuton. Syst. 54, 370–384 (2006)
M. Okada, K. Tatani, Y. Nakamura: Polynomial design of the nonlinear dynamics for the brain-like information processing of whole body motion, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2002) pp. 1410–1415
A.J. Ijispeert, J. Nakanishi, T. Shibata, S. Schaal: Nonlinear dynamical systems for imitation with humanoid robots, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2001)
T. Matsubara, S.H. Hyon, J. Morimoto: Learning parametric dynamic movement primitives from multiple demonstrations, Neural Netw. 24(5), 493–500 (2011)
J. Tani, M. Ito: Self-organization of behavioral primitives as multiple attractor dynamics: A robot experiment, IEEE Trans. Syst. ManCybern. A 33(4), 481–488 (2003)
L. Rabiner: A Tutorial on hidden Markov models and selected applications in speech recognition, Proceedings IEEE (1989) pp. 257–286
L. Kovar, M. Gleicher, F. Pighin: Motion graphs, ACM Trans.Graph. 21(3), 473–482 (2002)
W. Takano, H. Imagawa, D. Kulic, Y. Nakamura: What do you expect from a robot that tells your future? The crystal ball, Proc. IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS), Taipei (2008) pp. 1780–1785
Y. Sugita, J. Tani: Learning semantic combinatoriality from the interaction between linguistic and behavioral processes, Adapt. Behav. 3(1), 33–52 (2005)
T. Ogata, M. Murase, J. Tani, K. Komatani, H.G. Okuno: Two-way translation of compound sentences and arm motions by recurrent neural networks, Proc. IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2007) pp. 1858–1863
P.F. Brown, S.A.D. Pietra, V.J.D. Pietra, R.L. Mercer: The mathematics of statistical machine translation: Parameter estimation, Comput. Linguist. 19(2), 263–311 (1993)
W. Takano, Y. Nakamura: Construction of a space of motion labels from their mapping to full-body motion symbols, Adv. Robotics 29(2), 115–126 (2015)
W. Takano, Y. Nakamura: Statistical mutual conversion between whole body motion primitives and linguistic sentences for human motions, Int. J. Robot. Res. 34(10), 1314–1328 (2015)
S. Fine, Y. Singer, N. Tishby: The hierarchical hidden markov model: Analysis and application, Mach. Learn. 32, 41–62 (1998)
M. Brand, N. Oliver, A. Pentland: Coupled hidden Markov models for complex action recognition, Proc.IEEE Conf.Comput. Vis.Pattern Recognit. (1999) pp. 994–999
W. Takano, K. Yamane, T. Sugihara, K. Yamamoto, Y. Nakamura: Primitive communication based on motion recognition and generation with hierarchical mimesis model, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2006) pp. 3602–3609
D. Lee, C. Ott, Y. Nakamura: Mimetic communication model with compliant physical contact in human-humanoid interaction, Int. J.Robotics Res. 29(13), 1684–1704 (2004)
E. Demerican, L. Sentis, V. De Sapio, O. Khatib: Human motion reconstruction by direct control of marker trajectories. In: Advances in Robot Kinematics: Analysis and Design, ed. by J. Lenarcic, P. Wenger (Springer, Berlin, Heidelberg 2008) pp. 263–272
O. Khatib, O. Brock, K. Chang, F. Conti, D. Ruspini, L. Sentis: Robotics and interactive simulation, Commun. ACM 45(3), 46–51 (2002)
J.M. Wang, S.R. Hamner, S.L. Delp, V. Koltun: Optimizing locomotion controllers using biologically-based actuators and objectives, ACM Trans. Robotics 31(4), 25 (2012)
V.B. Zordan, J.K. Hodgins: Motion capture-driven simulations that hit and react, Proc.ACM SIGGRAPH Symp.Comput. Animat. (2002) pp. 89–96
K.W. Sok, M.M. Kim, J.H. Lee: Simulating biped behaviors from human motion data, ACM Trans.Graph. 26(3), 107 (2007)
M. Da Silva, Y. Abe, J. Popović: Interactive simulation of stylized human locomotion, ACM Trans.Graph. 27(3), 82 (2008)
K. Miura, M. Morisawa, F. Kanehiro, S. Kajia, K. Kaneko, K. Yokoi: Human-like walking with toe supporting for humanoids, Proc. IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2011) pp. 4428–4435
C. Ott, D.H. Lee, Y. Nakamura: Motion capture based human motion recognition and imitation by direct marker control, Proc.IEEE-RAS Int. Conf.Humanoid Robots (2008) pp. 399–405
K. Yamane, J.K. Hodgins: Simultaneous tracking and balancing of humanoid robots for imitating human motion capture data, Proc.IEEE/RSJ Int. Conf.Intell. Robot Syst. (IROS) (2009) pp. 2510–2517
K. Yamane, S.O. Anderson, J.K. Hodgins: Controlling humanoid robots with human motion data: Experimental validation, Proc.IEEE-RAS Int. Conf.Humanoid Robots (2010) pp. 504–510
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Video-References
Video-References
-
:
-
Example of optical motion capture data converted to joint angle data available from http://handbookofrobotics.org/view-chapter/65/videodetails/762
-
:
-
Example of muscle tensions computed from motion capture data available from http://handbookofrobotics.org/view-chapter/65/videodetails/763
-
:
-
The Crystal Ball: Predicting future motions available from http://handbookofrobotics.org/view-chapter/65/videodetails/764
-
:
-
Human motion mapped to a humanoid robot available from http://handbookofrobotics.org/view-chapter/65/videodetails/765
-
:
-
Converting human motion to sentences available from http://handbookofrobotics.org/view-chapter/65/videodetails/766
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Yamane, K., Takano, W. (2016). Human Motion Reconstruction. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_68
Download citation
DOI: https://doi.org/10.1007/978-3-319-32552-1_68
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32550-7
Online ISBN: 978-3-319-32552-1
eBook Packages: EngineeringEngineering (R0)