Skip to main content

Evolutionary Robotics

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

ANN:

artificial neural network

CCD:

charge-coupled device

DC:

direct current

DSM:

dynamic state machine

EPFL:

Ecole Polytechnique Fédérale de Lausanne

ER:

evolutionary robotics

FARSA:

framework for autonomous robotics simulation and analysis

FPGA:

field-programmable gate array

NN:

neural network

PIC:

programmable intelligent computer

PLD:

programmable logic device

ROM:

read-only memory

References

  1. S. Nolfi, D. Floreano: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines (MIT/Bradford, Cambridge 2000)

    Google Scholar 

  2. J.H. Holland: Adaptation in Natural and Artificial Systems (Univ. of Michigan Press, Ann Arbor 1975)

    Google Scholar 

  3. A.M. Turing: Computing machinery and intelligence, Mind LIX 236, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  4. V. Braitenberg: Vehicles. Experiments in Synthetic Psychology (MIT, Cambridge 1984)

    Google Scholar 

  5. R.D. Beer: Intelligence as Adaptive Behavior: An Experiment in Computational Neuroethology (Academic, Boston 1990)

    MATH  Google Scholar 

  6. D. Parisi, F. Cecconi, S. Nolfi: Econets: Neural networks that learn in an environment, Network 1, 149–168 (1990)

    Article  Google Scholar 

  7. P. Husbands, I. Harvey: Evolution versus design: Controlling autonomous robots, Integrating Percept. Plan. Action, Proc. 3rd IEEE Annu. Conf. Artif. Intell. Simul. Plan. (1992) pp. 139–146

    Google Scholar 

  8. D. Floreano, O. Miglino, D. Parisi: Emergent complex behaviors in ecosystems of neural networks. In: Parallel Architectures and Neural Networks, ed. by E. Caianiello (World Scientific, Singapore 1991)

    Google Scholar 

  9. R.A. Brooks: Intelligence without representation, Artif. Intell. 47, 139–159 (1991)

    Article  Google Scholar 

  10. F. Mondada, E. Franzi, P. Ienne: Mobile robot miniaturization: A tool for investigation in control algorithms, Proc. 3rd Int. Symp. Exp. Robotics, Tokyo, ed. by T. Yoshikawa, F. Miyazaki (1993) pp. 501–513

    Google Scholar 

  11. L. Steels (Ed.): The Biology and Technology of Intelligent Autonomous Agents, NATO ASI (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  12. D. Floreano, F. Mondada: Automatic creation of an autonomous agent: Genetic evolution of a neural-network driven robot, Proc. 3rd Int. Conf. Simul. Adapt. Behav.: Anim. Animat. 3, ed. by D. Cliff, P. Husbands, J.A. Meyer, S.W. Wilsonpages (MIT, Cambridge 1994) pp. 402–410

    Google Scholar 

  13. I. Harvey, P. Husbands, D.T. Cliff: Seeing the light: Artificial evolution, real vision, Proc. 3rd Int. Conf. Simul. Adapt. Behav.: Anim. Animat. 3, ed. by D.T. Cliff, P. Husbands, J.-A. Meyer, S. Wilson (MIT, Cambridge 1994) pp. 392–401

    Google Scholar 

  14. M.A. Lewis, A.H. Fagg, A. Solidum: Genetic programming approach to the construction of a neural network for a walking robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992) pp. 2618–2623

    Google Scholar 

  15. D. Cliff, I. Harvey, P. Husbands: Explorations in evolutionary robotics, Adapt. Behav. 2, 73–110 (1993)

    Article  Google Scholar 

  16. D.E. Goldberg: Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading City 1989)

    MATH  Google Scholar 

  17. H. de Garis: Genetic programming: Evolution of time dependent neural network modules which teach a pair of stick legs to walk, Proc. 9th Eur. Conf. Artif. Intell.(ECAI), Stock. (1990) pp. 204–206

    Google Scholar 

  18. R.D. Beer, J.C. Gallagher: Evolving dynamical neural networks for adaptive behavior, Adapt. Behav. 1, 94–110 (1992)

    Article  Google Scholar 

  19. R.D. Beer, H.J. Chiel, L.S. Sterling: Heterogeneous neural networks for adaptive behavior in dynamic environments. In: Neural Information Processing Systems, Vol. 1, ed. by D. Touretzky (Morgan Kauffman, San Mateo 1989) pp. 577–585

    Google Scholar 

  20. M.A. Lewis, A.H. Fagg, G. Bekey: Genetic algorithms for gait synthesis in a hexapod robot. In: Recent Trends in Mobile Robots, ed. by Y. Zheng (World Scientific, Singapore 1994) pp. 317–331

    Chapter  Google Scholar 

  21. J. Gallagher, R. Beer, M. Espenschiel, R. Quinn: Application of evolved locomotion controllers to a hexapod robot, Robotics Auton. Syst. 19(1), 95–103 (1996)

    Article  Google Scholar 

  22. R.D. Beer, R.D. Quinn, H.J. Chiel, R.E. Ritzmann: Biologically inspired approaches to robotics, Commun. ACM 40, 31–38 (1997)

    Article  Google Scholar 

  23. S. Galt, B.L. Luk, A.A. Collie: Evolution of smooth and efficient walking motions for an 8-legged robot, Proc. 6th Eur. Workshop Learn. Robots, Brighton (1997)

    Google Scholar 

  24. T. Gomi, K. Ide: Emergence of gaits of a legged robot by collaboration through evolution, IEEE World Congr. Comput. Intell. (IEEE Press, New York 1998)

    Google Scholar 

  25. F. Gruau: Automatic definition of modular neural networks, Adapt. Behav. 3(2), 151–183 (1995)

    Article  Google Scholar 

  26. F. Gruau, K. Quatramaran: Cellular encoding for interactive evolutionary robotics, Proc. 4th Eur. Conf. Artif. Life, ed. by P. Husbands, I. Harvey (MIT, Cambridge 1997) pp. 368–377

    Google Scholar 

  27. J. Kodjabachian, J.A. Meyer: Evolution and development of neural networks controlling locomotion, gradient following and obstacle avoidance in artificial insects, IEEE Trans. Neural Netw. 9, 796–812 (1998)

    Article  Google Scholar 

  28. N. Jakobi: Running across the reality gap: Octopod locomotion evolved in a minimal simulation, Lect. Notes Comput. Sci. 1468, 39–58 (1998)

    Article  Google Scholar 

  29. R. Téllez, C. Angulo, D. Pardo: Evolving the walking behavior of a 12 DOF quadruped using a distributed neural architecture, Lect. Notes Comput. Sci. 3853, 5–19 (2006)

    Article  Google Scholar 

  30. T. Reil, P. Husbands: Evolution of central pattern generators for bipedal walking in real-time physics environments, IEEE Trans. Evol. Comput. 6(2), 10–21 (2002)

    Article  Google Scholar 

  31. NaturalMotion: http://www.naturalmotion.com

  32. B. von Haller, A.J. Ijspeert, D. Floreano: Co-evolution of structures and controllers for Neubot underwater modular robots, Lect. Notes Comput. Sci. 3630, 189–199 (2005)

    Article  Google Scholar 

  33. E. Vaughan, E.A. Di Paolo, I. Harvey: The evolution of control and adaptation in a 3D powered passive dynamic walker, Proc. 9th Int. Conf. Simul. Synth. Living Syst. Artif. Life IX, ed. by J. Pollack, M. Bedau, P. Husbands, T. Ikegami, R. Watson (MIT, Cambridge 2004) pp. 139–145

    Google Scholar 

  34. T. McGeer: Passive walking with knees, Proc. IEEE Conf. Robotics Autom. (ICRA) (1990) pp. 1640–1645

    Google Scholar 

  35. S. Wischmann, F. Passeman: From passive to active dynamic 3D bipedal walking – An evolutionary approach, Proc. 7th Int. Conf. ClimbingWalk. Robots (CLAWAR 2004), ed. by M. Armada, P. González de Santos (Springer, Berlin, Heidelberg 2005) pp. 737–744

    Google Scholar 

  36. E. Vaughan, E.A. Di Paolo, I. Harvey: The tango of a load balancing biped, Proc. 7th Int. Conf. ClimbingWalk. Robots (CLAWAR), ed. by M. Armada, P. González de Santos (2005)

    Google Scholar 

  37. K. Endo, F. Yamasaki, T. Maeno, H. Kitano: A method for co-evolving morphology and walking pattern of biped humanoid robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 2775–2780

    Google Scholar 

  38. G. McHale, P. Husbands: Quadrupedal locomotion: Gasnets, CTRNNs and hybrid CTRNN/PNNs compared, Proc. 9th Int. Conf. Simul. Synth. Living Syst. (Artif. Life IX), ed. by J. Pollack, M. Bedau, P. Husbands, T. Ikegami, R. Watson (MIT, Cambridge 2004) pp. 106–112

    Google Scholar 

  39. G. McHale, P. Husbands: GasNets and other evolvable neural networks applied to bipedal locomotion, Proc. 8th Int. Conf. Simul. Adapt. Behav.: Anim. Animat. 8, ed. by S. Schaal (MIT, Cambridge 2004) pp. 163–172

    Google Scholar 

  40. J.F. Laszlo, M. van de Panne, E. Fiume: Limit cycle control and its application to the animation of balancing and walking, Proc. 23rd Annu. Conf. Comp. Graph. Interact. Tech., ACM (1996) pp. 155–162

    Google Scholar 

  41. R.A. Brooks: Artificial life and real robots, Proc. 1st Eur. Conf. Artif. Life., Toward a Pract.Auton. Syst., ed. by F.J. Varela, P. Bourgine (MIT, Cambridge 1992) pp. 3–10

    Google Scholar 

  42. R. Featherstone, D. Orin: Robot dynamics: Equations and algorithms, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 826–834

    Google Scholar 

  43. N. Jakobi, P. Husbands, I. Harvey: Noise and the reality gap: The use of simulation in evolutionary robotics, Lect. Notes Comput. Sci. 929, 704–720 (1995)

    Article  Google Scholar 

  44. O. Miglino, H.H. Lund, S. Nolfi: Evolving mobile robots in simulated and real environments, Artif. Life 2, 417–434 (1996)

    Article  Google Scholar 

  45. N. Jakobi: Half-baked, ad-hoc and noisy: Minimal simulations for evolutionary robotics, Proc. 4th Eur. Conf. Art. Life, ed. by P. Husbands, I. Harvey (MIT, Cambridge 1997) pp. 348–357

    Google Scholar 

  46. J.C. Bongard, H. Lipson: Nonlinear system identification using coevolution of models and tests, IEEE Trans. Evol. Comput. 9(4), 361–384 (2005)

    Article  MATH  Google Scholar 

  47. S. Koos, J. Mouret, S. Doncieux: Crossing the reality gap in evolutionary robotics by promoting transferable controllers, Proc. 12th Annu. Conf. Genetic Evol. Comput. ACM (2010) pp. 119–126

    Google Scholar 

  48. J. Urzelai, D. Floreano: Evolution of adaptive synapses: Robots with fast adaptive behavior in new environments, Evol. Comput. 9, 495–524 (2001)

    Article  MATH  Google Scholar 

  49. H.R. Maturana, F.J. Varela: Autopoiesis and Cognition: The Realization of the Living (Reidel, Dordrecht 1980)

    Book  Google Scholar 

  50. R.D. Beer: A dynamical systems perspective on agent-environment interaction, Artif. Intell. 72, 173–215 (1995)

    Article  Google Scholar 

  51. P. Funes, B. Orme, E. Bonabeau: Evolving emergent group behaviors for simple humans agents, Proc. 7th Eur. Conf. Artif. Life, ed. by J. Dittrich, T. Kim (Springer, Berlin, Heidelberg 2003) pp. 76–89

    Google Scholar 

  52. S. Nolfi: Behavior and cognition as a complex adaptive system: Insights from robotic experiments. In: Philosophy of Complex Systems, ed. by C. Hooker (Elsevier, Amsterdam 2009) pp. 443–466

    Google Scholar 

  53. S. Nolfi: Power and limits of reactive agents, Neurocomputing 42, 119–145 (2002)

    Article  MATH  Google Scholar 

  54. E. Tuci, T. Ferrauto, A. Zeschel, G. Massera, S. Nolfi: An Experiment on behaviour generalisation and the emergence of linguistic compositionality in evolving robots, IEEE Trans.Auton. Mental Dev. 3, 176–189 (2011)

    Article  Google Scholar 

  55. C. Scheier, R. Pfeifer, Y. Kunyioshi: Embedded neural networks: Exploiting constraints, Neural Netw. 11, 1551–1596 (1998)

    Article  Google Scholar 

  56. S. Nolfi, D. Marocco: Active perception: A sensorimotor account of object categorization, Proc. 7th Int. Conf. Simul. Adapt. Behav.: Anim. Animat. 7, ed. by B. Hallam, D. Floreano, J. Hallam, G. Hayes, J.-A. Meyer (MIT, Cambridge, MA 2002) pp. 266–271

    Google Scholar 

  57. E. Tuci, G. Massera, S. Nolfi: Active categorical perception of object shapes in a simulated anthropomorphic robotic arm, IEEE Trans.Evol. Comput. 14, 885–899 (2010)

    Article  Google Scholar 

  58. S. Collins, A. Ruina, R. Tedrake, M. Wisse: Efficient bipedal robots based on passive-dynamic walkers, Science 307(5712), 1082–1085 (2005)

    Article  Google Scholar 

  59. J.C. Bongard: Innocent until proven guilty: Reducing robot shaping from polynomial to linear time, IEEE Trans. Evol. Comput. 15(4), 571–585 (2011)

    Article  Google Scholar 

  60. H. Lipson, J.B. Pollack: Automatic design and manufacture of artificial lifeforms, Nature 406, 974–978 (2000)

    Article  Google Scholar 

  61. K. Sims: Evolving 3D morphology and behaviour by competition, Artif. Life 1(4), 28–39 (1994)

    Article  Google Scholar 

  62. Karl Sims: Evolved virtual creatures, evolution simulation, https://www.youtube.com/watch?v=JBgG_VSP7f8 (1994)

  63. P. Funes, J. Pollack: Evolutionary body building: Adaptive physical designs for robots, Artif. Life 4(4), 337–357 (1998)

    Article  Google Scholar 

  64. Golem Evolutionary Robotics: https://www.youtube.com/watch?v=sLtXXFw_q8c&playnext=1&list=PL396A15596535B451&feature=results_video

  65. J. Long: Darwin's devices: What evolving robots can teach us about the history of life and the future of technology (Basic Books, New York 2012)

    Google Scholar 

  66. A.J. Clark, J.M. Moore, J. Wang, X. Tan, P.K. McKinley: Evolutionary design and experimental validation of a flexible caudal fin for robotic fish, Artif. Life 13, 325–332 (2012)

    Google Scholar 

  67. J. Bongard: Morphological change in machines accelerates the evolution of robust behavior, Proc. Natl. Acad.Sci. 108(4), 1234–1239 (2011)

    Article  Google Scholar 

  68. M. Dorigo, M. Colombetti: Robot shaping: An experiment in behavior engineering (MIT, Cambridge 1997)

    Book  Google Scholar 

  69. J.E. Auerbach, J.C. Bongard: On the relationship between environmental and morphological complexity in evolved robots, Proc. 14th Int. Conf. Genetic Evol. Comput. Conf., ACM (2012) pp. 521–528

    Google Scholar 

  70. J. Hiller, H. Lipson: Automatic design and manufacture of soft robots, IEEE Trans. Robotics 28(2), 457–466 (2012)

    Article  Google Scholar 

  71. Evolved Soft Robots: https://www.youtube.com/watch?v=RrgZoo1-z_Y

  72. J. Bongard, V. Zykov, H. Lipson: Resilient machines through continuous self-modeling, Science 314(5802), 1118–1121 (2006)

    Article  Google Scholar 

  73. J.C. Bongard: Accelerating self-modeling in cooperative robot teams, IEEE Trans. Evol. Comput. 13(2), 321–332 (2009)

    Article  Google Scholar 

  74. K.J. Kim, H. Lipson: Towards a theory of mind in simulated robots, Proc. 11th Annual Conf. CompanionGeneticEvol. Comput. Conf. Late Break. Pap. ACM (2009) pp. 2071–2076

    Google Scholar 

  75. I. Harvey, P. Husbands, D.T. Cliff, A. Thompson, N. Jakobi: Evolutionary robotics: The Sussex approach, Robotics Auton. Syst. 20, 205–224 (1997)

    Article  Google Scholar 

  76. P. Husbands, I. Harvey, D. Cliff, G. Miller: Artificial evolution: A new path for AI?, Brain Cogn. 34, 130–159 (1997)

    Article  Google Scholar 

  77. N. Jakobi: Evolutionary robotics and the radical envelope of noise hypothesis, Adapt. Behav. 6, 325–368 (1998)

    Article  Google Scholar 

  78. K.O. Stanley, R. Miikkulainen: Evolving neural networks through augmenting topologies, Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  79. M.A. Arbib: Self-reproducing automata – Some implications for theoretical biology. In: Towards a Theoretical Biology, 2nd edn., ed. by C.H. Waddington (Edinburgh Univ. Press, Edinburgh 1969) pp. 204–226

    Google Scholar 

  80. J. Aloimonos, I. Weiss, A. Bandopadhay: Active vision, Int. J. Comput. Vis. 1(4), 333–356 (1987)

    Article  Google Scholar 

  81. R. Bajcsy: Active perception, Proc. IEEE 76(8), 996–1005 (1988)

    Article  Google Scholar 

  82. D.H. Ballard: Animate vision, Artif. Intell. 48(1), 57–86 (1991)

    Article  Google Scholar 

  83. P.J. Hancock, R.J. Baddeley, L.S. Smith: The principal components of natural images, Network 3, 61–70 (1992)

    Article  Google Scholar 

  84. D. Floreano, T. Kato, D. Marocco, E. Sauser: Coevolution of active vision and feature selection, Biol. Cybern. 90(3), 218–228 (2004)

    Article  MATH  Google Scholar 

  85. D. Floreano, M. Suzuki, C. Mattiussi: Active vision and receptive field development in evolutionary robots, Evol. Comput. 13(4), 527–544 (2005)

    Article  Google Scholar 

  86. T.D. Sanger: Optimal unsupervised learning in a single-layer feedforward neural network, Neural Netw. 2, 459–473 (1989)

    Article  Google Scholar 

  87. I. Harvey, E.A. Di Paolo, R. Wood, M. Quinn, E. Tuci: Evolutionary robotics: A new scientific tool for studying cognition, Artif. Life 11(1-2), 79–98 (2005)

    Article  Google Scholar 

  88. A. Seth: Causal connectivity of evolved neural networks during Behaviour, Netw. Comput.Neural Syst. 16(1), 35–54 (2005)

    Article  Google Scholar 

  89. E. Izquierdo, S. Lockery: Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans, J. Neurosci. 30, 12908–12917 (2010)

    Article  Google Scholar 

  90. P. Husbands, R.C. Moioli, Y. Shim, A. Philippides, P.A. Vargas, M. O'Shea: Evolutionary robotics and neuroscience. In: The Horizons of Evolutionary Robotics, ed. by P.A. Vargas, E.A. Di Paolo, I. Harvey, P. Husbands (MIT, Cambridge 2013) pp. 17–64

    Google Scholar 

  91. D.T. Cliff: Computational neuroethology: A provisional manifesto, Proc. 1st Int. Conf. Simul. Adapt. Behav.: Anim. Animat., ed. by J.-A. Meyer, S.W. Wilson (MIT, Cambridge 1991) pp. 29–39

    Google Scholar 

  92. R. Held, A. Hein: Movement-produced stimulation in the development of visually guided behavior, J. Comp. Physiol. Psychol. 56(5), 872–876 (1963)

    Article  Google Scholar 

  93. R. Held: Plasticity in sensory-motor systems, Sci. Am. 213(5), 84–94 (1965)

    Article  Google Scholar 

  94. M. Suzuki, D. Floreano, E.A. Di Paolo: The contribution of active body movement to visual development in evolutionary robots, Neural Netw. 18(5/6), 656–665 (2005)

    Article  Google Scholar 

  95. S. Healy (Ed.): Spatial Representations in Animals (Oxford Univ. Press, Oxford 1998)

    Google Scholar 

  96. N.A. Schmajuk, H.T. Blair: Place learning and the dynamics of spatial navigation: A neural network approach, Adapt. Behav. 1, 353–385 (1993)

    Article  Google Scholar 

  97. N. Burgess, J.G. Donnett, K.J. Jeffery, J. O'Keefe: Robotic and neuronal simulation of the hippocampus and rat navigation, Philos. Trans. R. Soc. 352, 1535–1543 (1997)

    Article  Google Scholar 

  98. J. O'Keefe, L. Nadel: The Hippocampus as a Cognitive Map (Clarendon, Oxford 1978)

    Google Scholar 

  99. J.S. Taube, R.U. Muller, J.B. Ranck Jr.: Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis, J. Neurosci. 10, 420–435 (1990)

    Article  Google Scholar 

  100. D.E. Rumelhart, J. McClelland, P.D.P. Group: Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT, Cambridge 1986)

    Book  Google Scholar 

  101. W. Maas, C.M. Bishop (Eds.): Pulsed Neural Networks (MIT, Cambridge 1999)

    Google Scholar 

  102. F. Rieke, D. Warland, R. van Steveninck, W. Bialek: Spikes:: Exploring the Neural Code (MIT, Cambridge 1997)

    MATH  Google Scholar 

  103. G. Indiveri, P. Verschure: Autonomous vehicle guidance using analog VLSI neuromorphic sensors, Lect. Notes Comput. Sci. 1327, 811–816 (1997)

    Article  Google Scholar 

  104. M.A. Lewis, R. Etienne-Cummings, A.H. Cohen, M. Hartmann: Toward biomorphic control using custom aVLSI CPG chips, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 494–500

    Google Scholar 

  105. D. Floreano, C. Mattiussi: Evolution of spiking neural controllers for autonomous vision-based robots. In: Evolutionary Robotics. From Intelligent Robotics to Artificial Life, ed. by T. Gomi (Springer, Tokyo 2001) pp. 38–61

    Chapter  Google Scholar 

  106. W. Gerstner, J.L. van Hemmen, J.D. Cowan: What matters in neuronal locking?, Neural Comput. 8, 1653–1676 (1996)

    Article  Google Scholar 

  107. D. Floreano, Y. Epars, J.C. Zufferey, C. Mattiussi: Evolution of spiking neural circuits in autonomous mobile robots, Int. J. Intell. Syst. 21(9), 1005–1024 (2006)

    Article  Google Scholar 

  108. J.A. Gally, P.R. Montague, G.N. Reeke, G.M. Edelman: The NO hypothesis: Possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system, Proc. Natl. Acad. Sci. 87(9), 3547–3551 (1990)

    Article  Google Scholar 

  109. J. Wood, J. Garthwaite: Models of the diffusional spread of nitric oxide: Implications for neural nitric oxide signaling and its pharmacological properties, Neuropharmacology 33, 1235–1244 (1994)

    Article  Google Scholar 

  110. T.M. Dawson, S.N. Snyder: Gases as biological messengers: Nitric oxide and carbon monoxide in the brain, J. Neurosci. 14(9), 5147–5159 (1994)

    Article  Google Scholar 

  111. J. Garthwaite, C.L. Boulton: Nitric oxide signaling in the central nervous system, Annu. Rev. Physiol. 57, 683–706 (1995)

    Article  Google Scholar 

  112. A.O. Philippides, P. Husbands, M. O'Shea: Four-dimensional neuronal signaling by nitric oxide: A computational analysis, J. Neurosci. 20(3), 1199–1207 (2000)

    Article  Google Scholar 

  113. C. Hölscher: Nitric oxide, the enigmatic neuronal messenger: Its role in synaptic plasticity, Trends Neurosci. 20, 298–303 (1997)

    Article  Google Scholar 

  114. P. Husbands, T. Smith, N. Jakobi, M. O'Shea: Better living through chemistry: Evolving GasNets for robot control, Connect. Sci. 10(4), 185–210 (1998)

    Article  Google Scholar 

  115. T.M.C. Smith, P. Husbands, M. O'Shea: Local evolvability, neutrality, and search difficulty in evolutionary robotics, Biosystems 69, 223–243 (2003)

    Article  Google Scholar 

  116. A.O. Philippides, P. Husbands, T. Smith, M. O'Shea: Flexible couplings: Diffusing neuromodulators and adaptive robotics, Artif. Life 11(1-2), 139–160 (2005)

    Article  Google Scholar 

  117. A.O. Philippides, P. Husbands, T. Smith, M. O'Shea: Structure based models of NO diffusion in the nervous system. In: Computational Neuroscience: A Comprehensive Approach, ed. by J. Feng (CRC, Boca Raton 2004) pp. 97–130

    Google Scholar 

  118. A.O. Philippides, S.R. Ott, P. Husbands, T. Lovick, M. O'Shea: Modeling co-operative volume signaling in a plexus of nitric oxide synthase-expressing neurons, J. Neurosci. 25(28), 6520–6532 (2005)

    Article  Google Scholar 

  119. P. Husbands, A. Philippides, P. Vargas, C. Buckley, P. Fine, E.A. Di Paolo, M. O'Shea: Spatial, temporal and modulatory factors affecting GasNet evolvability in a visually guided robotics task, Complexity 16(2), 35–44 (2010)

    Article  Google Scholar 

  120. D. Barañano, C. Ferris, S. Snyder: A typical neural messenger, Trends Neurosci. 24(2), 99–106 (2001)

    Article  Google Scholar 

  121. T.M.C. Smith, P. Husbands, A. Philippides, M. O'Shea: Neuronal plasticity and temporal adaptivity: Gasnet robot control networks, Adapt. Behav. 10(3/4), 161–184 (2002)

    Article  Google Scholar 

  122. G. Edelman, J. Gally: Degeneracy and complexity in biological systems, Proc Natl. Acad. Sci. USA 98, 13763–13768 (2001)

    Article  Google Scholar 

  123. C. Fernando, K. Karishma, E. Szathmáry: Copying and evolution of neuronal topology, PLoS ONE 3(11), e3775 (2008)

    Article  Google Scholar 

  124. C. Fernando, E. Szathmáry, P. Husbands: Selectionist and evolutionary approaches to brain function: A critical appraisal, Front. Comput. Neurosci. 6, 24 (2012)

    Article  Google Scholar 

  125. S. Nolfi, D. Floreano: Learning and evolution, Auton. Robots 7, 89–113 (1999)

    Article  Google Scholar 

  126. S. Nolfi, D. Parisi: Learning to adapt to changing environments in evolving neural networks, Adapt. Behav. 1, 75–98 (1997)

    Google Scholar 

  127. J.M. Baldwin: A new factor in evolution, Am. Nat. 30, 441–451 (1896)

    Article  Google Scholar 

  128. C.H. Waddington: Canalization of development and the inheritance of acquired characters, Nature 150, 563–565 (1942)

    Article  Google Scholar 

  129. G. Mayley: Landscapes, learning costs, and genetic assimilation, Evol. Comput. 4, 213–234 (1997)

    Article  Google Scholar 

  130. D. Floreano, F. Mondada: Evolution of plastic neurocontrollers for situated agents, Proc. 4th Int. Conf. Simul. Adapt. Behav.: Anim. Animat. 4, ed. by P. Maes, M. Matarić, J.A. Meyer, J. Pollack, H. Roitblat, S. Wilson (MIT, Cambridge 1996) pp. 402–410

    Google Scholar 

  131. D. Floreano, J. Urzelai: Evolutionary robots with online self-organization and behavioral fitness, Neural Netw. 13, 431–443 (2000)

    Article  Google Scholar 

  132. D. Floreano, J. Urzelai: Neural morphogenesis, synaptic plasticity, and evolution, Theory Biosci. 120(3-4), 225–240 (2001)

    Article  MATH  Google Scholar 

  133. E. Di Paolo: Evolving spike-timing-dependent plasticity for single-trial learning in robots, Philos. Trans. R. Soc. Lond. 361, 2299–2319 (2003)

    Article  MathSciNet  Google Scholar 

  134. Y.U. Cao, A.S. Fukunaga, A. Kahng: Cooperative mobile robotics: Antecedents and directions, Auton. Robots 4, 7–27 (1997)

    Article  Google Scholar 

  135. S. Nolfi: Co-evolving predator and prey robots, Adapt. Behav. 20, 10–15 (2012)

    Article  Google Scholar 

  136. D. Floreano, S. Nolfi: God save the red queen! Competition in co-evolutionary robotics, Proc. 2nd Conf. Genetic Program., ed. by J.R. Koza, K. Deb, M. Dorigo, D. Foegel, B. Garzon, H. Iba, R.L. Riolo (Morgan Kaufmann, San Francisco, CA 1997) pp. 398–406

    Google Scholar 

  137. S. Nolfi, D. Floreano: Co-evolving predator and prey robots: Do arm races arise in artificial evolution?, Artif. Life 4(4), 311–335 (1998)

    Article  Google Scholar 

  138. D. Floreano, S. Nolfi: Evolution versus design: Controlling autonomous robots, Proc. 4th Eur. Conf. Artif. Life, ed. by P. Husbands, I. Harvey (MIT, Cambridge 1997) pp. 378–387

    Google Scholar 

  139. V. Trianni, S. Nolfi: Evolving collective control, cooperation and distributed cognition. In: Handbook of Collective Robotics – Fundamentals and Challenges, ed. by S. Kernbach (CRC, Boca Raton 2012) pp. 246–276

    Google Scholar 

  140. G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, S. Nolfi: Self-organised coordinated motion in groups of physically connected robots, IEEE Trans. Syst. Man Cybern. 37, 224–239 (2007)

    Article  Google Scholar 

  141. M. Quinn, L. Smith, G. Mayley, P. Husbands: Evolving controllers for a homogeneous system of physical robots: Structured cooperation with minimal sensors, Philos. Trans. R. Soc. Lond. 361, 2321–2344 (2003)

    Article  MathSciNet  Google Scholar 

  142. G. Baldassarre, D. Parisi, S. Nolfi: Coordination and behavior integration in cooperating simulated robots, Proc. 8th Int. Conf. Simul. Adapt. Behav.: Anim. Animat. 8 (MIT, Cambridge 2003) pp. 385–394

    Google Scholar 

  143. V. Sperati, V. Trianni, S. Nolfi: Self-organised path formation in a swarm of robots, Swarm Intell. 5, 97–119 (2011)

    Article  Google Scholar 

  144. M. Quinn: Evolving communication without dedicated communication channels, Proc. 6th Eur. Conf. Artif. Life, ed. by J. Kelemen, P. Sosik (Springer, Berlin, Heidelberg 2001) pp. 357–366

    Google Scholar 

  145. D. Marocco, S. Nolfi: Self-organization of communication in evolving robots, Proc. 10th Int. Conf. Artif. Life, ed. by L. Rocha, L. Yeager, M. Bedau, D. Floreano, R. Goldstone, A. Vespignani (MIT, Cambridge 2006) pp. 178–184

    Google Scholar 

  146. D. Floreano, S. Mitri, S. Magnenat, L. Keller: Evolutionary conditions for the emergence of communication in robots, Curr. Biol. 17, 514–519 (2007)

    Article  Google Scholar 

  147. M. Waibel, D. Floreano, S. Magnenat, L. Keller: Division of labour and colony efficiency in social insects: Effects of interactions between genetic architecture, colony kin structure and rate of perturbations, Proc. Royal Soc. B Biol. Sci. 273, 1815–1823 (2006)

    Article  Google Scholar 

  148. F. Mondada, G. Pettinaro, A. Guignard, I. Kwee, D. Floreano, J.L. Deneubourg, S. Nolfi, L.M. Gambardella, M. Dorigo: Swarm-bot: A new distributed robotic concept, Auton. Robots 17, 193–221 (2004)

    Article  Google Scholar 

  149. V. Trianni, S. Nolfi, M. Dorigo: Cooperative hole-avoidance in a swarm-bot, Robotics Auton. Syst. 54, 97–103 (2006)

    Article  Google Scholar 

  150. G. Baldassarre, S. Nolfi, D. Parisi: Evolving mobile robots able to display collective behavior, Artif. Life 9, 255–267 (2003)

    Article  Google Scholar 

  151. S. Nolfi: Evolution of communication and language in evolving robots. In: Current Perspective on the origin of language, ed. by C. Lefebvre, B. Comrie, H. Cohen (Cambridge Univ. Press, Cambridge 2013)

    Google Scholar 

  152. J. De Greef, S. Nolfi: Evolution of implicit and explicit communication in a group of mobile robots. In: Evolution of Communication and Language in Embodied Agents, ed. by S. Nolfi, M. Mirolli (Springer, Berlin, Heidelberg 2010) pp. 179–214

    Chapter  Google Scholar 

  153. S. Mitri, D. Floreano, L. Keller: The evolution of information suppression in communicating robots with conflicting interests, Proc. Natl. Acad.Sci. 106, 15786–15790 (2009)

    Article  Google Scholar 

  154. S. Mitri, D. Floreano, L. Keller: Relatedness influences signal reliability in evolving robots, Proc. Royal Soc. B Biol. Sci. 278, 378–383 (2011)

    Article  Google Scholar 

  155. S. Nolfi: Emergence of communication in embodied agents: Co-adapting communicative and non-communicative behaviours, Connect. Sci. 3-4, 231–248 (2005)

    Article  Google Scholar 

  156. S. Wischmanna, D. Floreano, L. Keller: Historical contingency affects signaling strategies and competitive abilities in evolving populations of simulated robots, Proc. Natl. Acad.Sci. 109, 864–868 (2011)

    Article  Google Scholar 

  157. A. Thompson: Evolving electronic robot controllers that exploit hardware resources, Lect. Notes Artif. Intell. 929, 640–656 (1995)

    Google Scholar 

  158. A. Thompson: Hardware Evolution: Automatic Design of Electronic Circuits in Reconfigurable Hardware by Artificial Evolution, Distinguished Dissertation Series (Springer, Berlin, Heidelberg 1998)

    Book  Google Scholar 

  159. A. Thompson: Artificial evolution in the physical world. In: Evolutionary Robotics. From Intelligent Robots to Artificial Life (ER'97), ed. by T. Gomi (AAI Books, Ottawa 1997) pp. 101–125

    Google Scholar 

  160. D. Keymeulen, M. Durantez, M. Konaka, Y. Kuniyoshi, T. Higuchi: An evolutionary robot navigation system using a gate-level evolvable hardware, Lect. Notes Comput. Sci. 1259, 193–209 (1996)

    Article  Google Scholar 

  161. G. Ritter, J.-M. Puiatti, E. Sanchez: Leonardo and discipulus simplex: An autonomous, evolvable six-legged walking robot, Lect. Notes Comput. Sci. 1586, 688–696 (1999)

    Article  Google Scholar 

  162. D. Roggen, D. Floreano, C. Mattiussi: A morphogenetic evolutionary system: Phylogenesis of the POETIC circuit, Lect. Notes Comput. Sci. 2606, 153–164 (2003)

    Article  MATH  Google Scholar 

  163. D. Roggen, S. Hofmann, Y. Thoma, D. Floreano: Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot, NASA/DoD Conf. Evolv. Hardw., ed. by J. Lohn, R. Zebulum, J. Steincamp, D. Keymeulen, A. Stoica, M.I. Fergusonpages (2003) pp. 189–198

    Google Scholar 

  164. M. Matarić, D. Cliff: Challenges in evolving controllers for physical robots, Robotics Auton. Syst. 19(1), 67–83 (1996)

    Article  Google Scholar 

  165. G. Massera, T. Ferrauto, O. Gigliotta, S. Nolfi: FARSA: An open software tool for embodied cognitive science, Proc. 12th Eur. Conf. Artif. Life, ed. by P. Lio, O. Miglino, G. Nicosia, S. Nolfi, M. Pavone (MIT, Cambridge 2013) pp. 454–538

    Google Scholar 

  166. Framework for Autonomous Robotics Simulation and Analysis: http://laral.istc.cnr.it/farsa

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Nolfi .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Visual navigation of mobile robot with pan-tilt camera available from http://handbookofrobotics.org/view-chapter/76/videodetails/36

:

Visual navigation with collision avoidance available from http://handbookofrobotics.org/view-chapter/76/videodetails/37

:

Coevolved predator and prey robots available from http://handbookofrobotics.org/view-chapter/76/videodetails/38

:

Evolution of collision-free navigation available from http://handbookofrobotics.org/view-chapter/76/videodetails/39

:

Online learning to adapt to fast environmental variations available from http://handbookofrobotics.org/view-chapter/76/videodetails/40

:

iCub language comprehension available from http://handbookofrobotics.org/view-chapter/76/videodetails/41

:

Resilent machines through continuous self-modeling available from http://handbookofrobotics.org/view-chapter/76/videodetails/114

:

A swarm-bot of eight robots displaying coordinated motion available from http://handbookofrobotics.org/view-chapter/76/videodetails/115

:

Discrimination of objects through sensory-motor coordination available from http://handbookofrobotics.org/view-chapter/76/videodetails/116

:

Evolution of cooperative and communicative behaviors available from http://handbookofrobotics.org/view-chapter/76/videodetails/117

:

Exploration and homing for battery recharge available from http://handbookofrobotics.org/view-chapter/76/videodetails/118

:

Introduction to evolutionary robotics at EPFL available from http://handbookofrobotics.org/view-chapter/76/videodetails/119

:

Evolution of visually guided behavior on Sussex gantry robot available from http://handbookofrobotics.org/view-chapter/76/videodetails/371

:

Evolved walking in an Octpod available from http://handbookofrobotics.org/view-chapter/76/videodetails/372

:

Evolved homing walk on rough ground available from http://handbookofrobotics.org/view-chapter/76/videodetails/373

:

Evolved bipedal walking available from http://handbookofrobotics.org/view-chapter/76/videodetails/374

:

Evolved GasNet visualization available from http://handbookofrobotics.org/view-chapter/76/videodetails/375

:

Evolved group coordination available from http://handbookofrobotics.org/view-chapter/76/videodetails/376

:

Morphological change in an autonomous robot available from http://handbookofrobotics.org/view-chapter/76/videodetails/771

:

More complex robots evolve in more complex environments available from http://handbookofrobotics.org/view-chapter/76/videodetails/772

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nolfi, S., Bongard, J., Husbands, P., Floreano, D. (2016). Evolutionary Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics