Skip to main content

Computing the Chow Variety of Quadratic Space Curves

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9582))

  • 761 Accesses

Abstract

Quadrics in the Grassmannian of lines in 3-space form a 19-dimensional projective space. We study the subvariety of coisotropic hypersurfaces. Following Gel’fand, Kapranov and Zelevinsky, it decomposes into Chow forms of plane conics, Chow forms of pairs of lines, and Hurwitz forms of quadric surfaces. We compute the ideals of these loci.

P. Bürgisser and P. Lairez were partially supported by DFG grant BU 1371/2-2.

K. Kohn was supported by a Fellowship from the Einstein Foundation Berlin.

B. Sturmfels was supported by the US National Science Foundation and the Einstein Foundation Berlin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bürgisser, P., Cucker, F.: Condition: The Geometry of Numerical Algorithms. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  2. Catanese, F.: Cayley forms and self-dual varieties. Proc. Edinb. Math. Soc. 57, 89–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cayley, A.: On the theory of elimination. Camb. Dublin Math. J. 3, 116–120 (1848)

    Google Scholar 

  4. Chow, W.-L., van der Waerden, B.L.: Zur algebraischen Geometrie. IX. Über zugeordnete Formen und algebraische Systeme von algebraischen Mannigfaltigkeiten. Math. Ann. 113, 696–708 (1937)

    Article  MATH  Google Scholar 

  5. DeConcini, C., Goresky, M., MacPherson, R., Procesi, C.: On the geometry of quadrics and their degenerations. Comment. Math. Helvetici 63, 337–413 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  7. Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry. www.math.uiuc.edu/Macaulay2/

  8. Green, M., Morrison, I.: The equations defining Chow varieties. Duke Math. J. 53, 733–747 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sturmfels, B.: The Hurwitz form of a projective variety. arXiv:1410.6703

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathlén Kohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bürgisser, P., Kohn, K., Lairez, P., Sturmfels, B. (2016). Computing the Chow Variety of Quadratic Space Curves. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32859-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32858-4

  • Online ISBN: 978-3-319-32859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics