Skip to main content

Using Taylor Models in Exact Real Arithmetic

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9582))

  • 747 Accesses

Abstract

Software libraries for Exact Real Arithmetic implement the theory of computability on non-denumerable sets. Usually they are based on interval arithmetic. We discuss enhancements where the interval arithmetic is augmented by versions of Taylor models. Although this has no effect on the abstract notion of computability, the efficiency of implementations can be improved dramatically.

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no. PIRSES-GA-2011-294962-COMPUTAL and from the DFG/RFBR grant CAVER BE 1267/14-1 and 14-01-91334.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer, A., Kavkler, I.: Implementing real numbers with RZ. Electr. Notes Theor. Comput. Sci. 202, 365–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanck, J.: Efficient exact computation of iterated maps. J. Log. Algebr. Program. 64(1), 41–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. New Computational Paradigms: Changing Conceptions of What is Computable, pp. 425–491. Springer, New York (2008)

    Google Scholar 

  4. Brauße, F., Korovina, M., Müller, N.T.: Towards using exact real arithmetic for initial value problems. In: PSI: 10th Ershov Informatics Conference, 25–27, Innopolis, Kazan, Russia, to appear in Lecture Notes in Computer Science (2015)

    Google Scholar 

  5. De Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numerical Algorithms 37(1–4), 147–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duracz, J., Farjudian, A., Konečný, M., Taha, W.: Function Interval Arithmetic. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 677–684. Springer, Heidelberg (2014)

    Google Scholar 

  7. Ershov, Y.: Handbook of Computability Theory, chapter Theory of numberings, pp. 473–503. North-Holland, Amsterdam (1999)

    Google Scholar 

  8. Hansen, E.R.: A generalized interval arithmetic. In: Interval Mathemantics: Proceedings of the International Symposium, Karlsruhe, West Germany, May 20–24, pp. 7–18 (1975)

    Google Scholar 

  9. Khanh, T.V., Ogawa, M.: rasat: SMT for polynomial inequality. Technical Report Research Report IS-RR–003, JAIST (2013)

    Google Scholar 

  10. Ko, K.-I.: Complexity theory of real functions. Birkhauser Boston Inc., Cambridge, MA, USA (1991)

    Book  MATH  Google Scholar 

  11. Makino, K., Berz, M.: Higher order verified inclusions of multidimensional systems by taylor models. Nonlinear Analysis: Theory, Methods & Applications, 47(5), 3503–3514, Proceedings of the Third World Congress of Nonlinear Analysts (2001)

    Google Scholar 

  12. Müller, N.T.: The iRRAM: Exact arithmetic in C++. Lecture notes in computer science, 2991:222–252 (2001)

    Google Scholar 

  13. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Spandl, C.: Computational complexity of iterated maps on the interval (extended abstract). In: Proceedings Seventh International Conference on Computability and Complexity in Analysis, CCA 2010, Zhenjiang, China, 21–25th , pp. 139–150, 2010 June 2010

    Google Scholar 

  15. Tupper, J.A.: Graphing equations with generalized interval arithmetic. Master’s thesis, University of Toronto (1996)

    Google Scholar 

  16. Weihrauch, K.: Computable analysis: an introduction. Springer-Verlag New York Inc, Secaucus, NJ, USA (2000)

    Book  MATH  Google Scholar 

  17. Zimmermann, P.: Reliable Computing with GNU MPFR. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 42–45. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Brauße, F., Korovina, M., Müller, N. (2016). Using Taylor Models in Exact Real Arithmetic. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32859-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32858-4

  • Online ISBN: 978-3-319-32859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics