Skip to main content

Average-Case Bit-Complexity Theory of Real Functions

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9582))

  • 759 Accesses

Abstract

We introduce, and initiate the study of, average-case bit-complexity theory over the reals: Like in the discrete case a first, naïve notion of polynomial average runtime turns out to lack robustness and is thus refined. Standard examples of explicit continuous functions with increasingly high worst-case complexity are shown to be in fact easy in the mean; while a further example is constructed with both worst and average complexity exponential: for topological/metric reasons, i.e., oracles do not help. The notions are then generalized from the reals to represented spaces; and, in the real case, related to randomized computation.

Supported in part by the Marie Curie International Research Staff Exchange Scheme Fellowship 294962 within the 7th European Community Framework Programme, by the German Research Foundation (DFG) with project Zi 1009/4-1, and by the International Research Training Group 1529. A preliminary version of this work was presented at CCA 2015. Note added in proof: Theorem 9 is conditional to the assertion of Lemma 11(c).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brattka, V., Hölzl, R., Gherardi, G.: Probabilistic computability and choice. Inf. Comput. 242(C), 249–286 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bosserhoff, V.: Notions of probabilistic computability on represented spaces. J. Univ. Comput. Sci. 146(6), 956–995 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Bogdanov, A., Trevisan, L.: Average-case complexity. Found. Trends Theor. Comput. Sci. 2(1), 1–106 (2006). arXiv:cs/0606037

    Google Scholar 

  4. Coja-Oghlan, A., Krivelevich, M., Vilenchik, D.: Why almost all \(k\)-colorable graphs are easy to color. Theor. Comput. Syst. 46(3), 523–565 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldreich, O.: Notes on Levin’s theory of average-case complexity. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 233–247. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B.: Probabilistic Methods for Algorithmic Discrete Mathematics. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  7. Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of smoothness: parameterized bit-complexity of numerical operators on analytic functions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015)

    Article  MATH  Google Scholar 

  8. Ko, K.-I., Friedman, H.: Computational complexity of real functions. Theor. Comput. Sci. 20, 323–352 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ko, K.-I.: Computational Complexity of Real Functions. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  10. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of smooth differential equations. Log. Methods Comput. Sci. 10, 1 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  12. Ritter, K. (ed.): Average-Case Analysis of Numerical Problems. Lecture Notes in Mathematics, vol. 1733. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  13. Schröder, M.: Spaces allowing type-2 complexity theory revisited. Math. Log. Q. 50, 443–459 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schröder, M., Simpson, A.: Representing probability measures using probabilistic processes. J. Complex. 22, 768–782 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  16. Weihrauch, K.: Computational complexity on computable metric spaces. Math. Log. Q. 49(1), 3–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ziegler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schröder, M., Steinberg, F., Ziegler, M. (2016). Average-Case Bit-Complexity Theory of Real Functions. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32859-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32858-4

  • Online ISBN: 978-3-319-32859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics