Abstract
Cooperating robotic systems, especially in the context of fault-tolerance of complex robotic mechanisms, is an important question for theoretical and applied studies. In this paper, we focus on one measure of fault tolerance in robots, namely, the multiplicity of the configurations for reaching a particular point in the workspace, which is difficult to measure using traditional methods. As a particular example, we consider the case of a free-swinging failure of a robotic arm that is handled by having a cooperating functional robot grasp the link adjacent to the failed joint. We present an efficient method to compute the multiplicity measure of the workspace, based on the tools from numerical algebraic geometry, applied to the inverse kinematics problem re-cast in the form of a polynomial system. To emphasize the difference between our methods and more traditional approaches, we compute the measure of workspace based on the multiplicity of configurations, and optimize placement of synergistic robot arms and the optimal grasp point on each link of the broken robot based on this measure.
D.A. Brake—Partially supported by grants NSF-DMS-09087551 and NSF-IIS-0812437.
D.J. Bates—Partially supported by grants NSF DMS–0914674 and NSF DMS–1115668.
V. Putkaradze—Partially supported by grant NSF-DMS-09087551.
A.A. Maciejewski—Partially supported by grant NSF-IIS-0812437.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carreras, C., Walker, I.D.: Interval methods for fault-tree analysis in robotics. IEEE Trans. Robot. Autom. 50(1), 3–11 (2001)
Anand, M., Selvaraj, T., Kumanan, S., Janarthanan, J.: A hybrid fuzzy logic artificial neural network algorithm-based fault detection and isolation for industrial robot manipulators. Int. J. Manuf. Res. 2(3), 279–302 (2007)
Ji, M., Sarkar, N.: Supervisory fault adaptive control of a mobile robot and its application in sensor-fault accommodation. IEEE Trans. Robot. 23(1), 174–178 (2007)
De Luca, A., Ferrajoli, L.: A modified Newton-Euler method for dynamic computations in robot fault detection and control. In: IEEE International Conference on Robotics and Automation, pp. 3359–3364, May 2009
Brambilla, D., Capisani, L., Ferrara, A., Pisu, P.: Fault detection for robot manipulators via second-order sliding modes. IEEE Trans. Ind. Electron. 55(11), 3954–3963 (2008)
Groom, K.N., Maciejewski, A.A., Balakrishnan, V.: Real-time failure-tolerant control of kinematically redundant manipulators. IEEE Trans. Robot. Autom. 15(6), 1109–1116 (1999)
Maciejewski, A.A.: Fault tolerant properties of kinematically redundant manipulators. In Proceedings IEEE International Conference on Robotics and Automation, Cincinatti, OH, USA, pp. 638–642 (1990)
Roberts, R.G., Maciejewski, A.A.: A local measure of fault tolerance for kinematically redundant manipulators. IEEE Trans. Robot. Autom. 12(4), 543–552 (1996)
Hassan, M., Notash, L.: Optimizing fault tolerance to joint jam in the design of parallel robot manipulators. Mech. Mach. Theory 42, 1401–1407 (2007)
McInroy, J.E., O’Brien, J.F., Neat, G.W.: Precise, fault-tolerant pointing using a Stewart platform. IEEE/ASME Trans. Mechatronics 4(1), 91–95 (1999)
Wu, E.C., Hwang, J.C., Chladek, J.T.: Fault-tolerant joint development for the space shuttle remote manipulator system: analysis and experiment. IEEE Trans. Robot. Autom. 9(5), 675–684 (1993)
Yi, Y., McInroy, J.E., Chen, Y.: Fault tolerance of parallel manipulators using task space and kinematic redundancy. IEEE Trans. Robot. 22(5), 1017–1021 (2006)
Paredis, C.J.J., Khosla, P.K.: Designing fault-tolerant manipulators: how many degrees of freedom? Int. J. Robot. Res. 15(6), 611–628 (1996)
Aghili, F., Parsa, K.: A reconfigurable robot with lockable cylindrical joints. IEEE Trans. Robot. 25(4), 785–797 (2009)
Chen, Y., McInroy, J.E., Yi, Y.: Optimal, fault-tolerant mappings to achieve secondary goals without compromising primary performance. IEEE Trans. Robot. 19(4), 680–691 (2003)
Lewis, C.L., Maciejewski, A.A.: Fault tolerant operation of kinematically redundant manipulators for locked joint failures. IEEE Trans. Robot. Autom. 13(4), 622–629 (1997)
English, J.D., Maciejewski, A.A.: Fault tolerance for kinematically redundant manipulators: anticipating free-swinging joint failures. IEEE Trans. Robot. Autom. 14(4), 566–575 (1998)
Sommese, A.J., Wampler, C.W.: Numerical algebraic geometry and algebraic kinematics. Acta Numerica 20, 469–567 (2011)
Sommese, A.J., Wampler, C.W.: The Numerical Solution to Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)
Sommese, A., Verschelde, J., Wampler, C.W.: Advances in polynomial continuation for solving problems in kinematics. J. Mech. Des. 126(2), 262–268 (2004)
Wampler, C.W., Morgan, A.P.: Solving the kinematics of general 6R manipulators using polynomial continuation. In: Warwick, K. (ed.) Robotics: Applied Mathematics and Computational Aspects, pp. 57–69. Clarendon Press, Oxford (1993)
Wampler, C.W., Morgan, A.P., Sommese, A.J.: Complete solution of the nine-point path synthesis problem for four-bar linkages. J. Mech. Des. 114, 153–159 (1992)
Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011)
English, J.D., Maciejewski, A.A.: Measuring and reducing the Euclidean-space measures of robotic joint failures. IEEE Trans. Robot. Autom. 16(1), 20–28 (2000)
English, J.D., Maciejewski, A.A.: Failure tolerance through active braking: a kinematic approach. Int. J. Rob. Res. 20(4), 287–299 (2001)
Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer, Berlin (1990)
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. SIAM, Philadelphia (2013)
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for Numerical Algebaic Geometry (2015). http://bertini.nd.edu
Bates, D.J., Brake, D.A., Niemerg, M.: Paramatopy: Parallel parameter homotopy via Bertini (2015). http://www.paramotopy.com
Brake, D.A., Bates, D.J., Putkaradze, V., Maciejewski, A.A.: Illustration of numerical algebraic methods for workspace estimation of cooperating robots after joint failure. In: IASTED Technology Conferences, Pittsburg, PN, USA, November 2010
Macho, E., Pinto, C., Amezua, E., Hernndez, A.: Software tool to compute, analyze and visualize workspaces of parallel kinematics robots. Adv. Robot. 25, 675–698 (2011)
Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A., Wampler, C.W.: Bertini_real: Software for real algebraic sets (2015). http://www.bertinireal.com
Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini_real: software for one- and two-dimensional real algebraic sets. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 175–182. Springer, Heidelberg (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Brake, D.A., Bates, D.J., Putkaradze, V., Maciejewski, A.A. (2016). Workspace Multiplicity and Fault Tolerance of Cooperating Robots. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-32859-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32858-4
Online ISBN: 978-3-319-32859-1
eBook Packages: Computer ScienceComputer Science (R0)