Skip to main content

Workspace Multiplicity and Fault Tolerance of Cooperating Robots

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9582))

  • 761 Accesses

Abstract

Cooperating robotic systems, especially in the context of fault-tolerance of complex robotic mechanisms, is an important question for theoretical and applied studies. In this paper, we focus on one measure of fault tolerance in robots, namely, the multiplicity of the configurations for reaching a particular point in the workspace, which is difficult to measure using traditional methods. As a particular example, we consider the case of a free-swinging failure of a robotic arm that is handled by having a cooperating functional robot grasp the link adjacent to the failed joint. We present an efficient method to compute the multiplicity measure of the workspace, based on the tools from numerical algebraic geometry, applied to the inverse kinematics problem re-cast in the form of a polynomial system. To emphasize the difference between our methods and more traditional approaches, we compute the measure of workspace based on the multiplicity of configurations, and optimize placement of synergistic robot arms and the optimal grasp point on each link of the broken robot based on this measure.

D.A. Brake—Partially supported by grants NSF-DMS-09087551 and NSF-IIS-0812437.

D.J. Bates—Partially supported by grants NSF DMS–0914674 and NSF DMS–1115668.

V. Putkaradze—Partially supported by grant NSF-DMS-09087551.

A.A. Maciejewski—Partially supported by grant NSF-IIS-0812437.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carreras, C., Walker, I.D.: Interval methods for fault-tree analysis in robotics. IEEE Trans. Robot. Autom. 50(1), 3–11 (2001)

    Google Scholar 

  2. Anand, M., Selvaraj, T., Kumanan, S., Janarthanan, J.: A hybrid fuzzy logic artificial neural network algorithm-based fault detection and isolation for industrial robot manipulators. Int. J. Manuf. Res. 2(3), 279–302 (2007)

    Article  Google Scholar 

  3. Ji, M., Sarkar, N.: Supervisory fault adaptive control of a mobile robot and its application in sensor-fault accommodation. IEEE Trans. Robot. 23(1), 174–178 (2007)

    Article  Google Scholar 

  4. De Luca, A., Ferrajoli, L.: A modified Newton-Euler method for dynamic computations in robot fault detection and control. In: IEEE International Conference on Robotics and Automation, pp. 3359–3364, May 2009

    Google Scholar 

  5. Brambilla, D., Capisani, L., Ferrara, A., Pisu, P.: Fault detection for robot manipulators via second-order sliding modes. IEEE Trans. Ind. Electron. 55(11), 3954–3963 (2008)

    Article  Google Scholar 

  6. Groom, K.N., Maciejewski, A.A., Balakrishnan, V.: Real-time failure-tolerant control of kinematically redundant manipulators. IEEE Trans. Robot. Autom. 15(6), 1109–1116 (1999)

    Article  Google Scholar 

  7. Maciejewski, A.A.: Fault tolerant properties of kinematically redundant manipulators. In Proceedings IEEE International Conference on Robotics and Automation, Cincinatti, OH, USA, pp. 638–642 (1990)

    Google Scholar 

  8. Roberts, R.G., Maciejewski, A.A.: A local measure of fault tolerance for kinematically redundant manipulators. IEEE Trans. Robot. Autom. 12(4), 543–552 (1996)

    Article  MathSciNet  Google Scholar 

  9. Hassan, M., Notash, L.: Optimizing fault tolerance to joint jam in the design of parallel robot manipulators. Mech. Mach. Theory 42, 1401–1407 (2007)

    Article  MATH  Google Scholar 

  10. McInroy, J.E., O’Brien, J.F., Neat, G.W.: Precise, fault-tolerant pointing using a Stewart platform. IEEE/ASME Trans. Mechatronics 4(1), 91–95 (1999)

    Article  Google Scholar 

  11. Wu, E.C., Hwang, J.C., Chladek, J.T.: Fault-tolerant joint development for the space shuttle remote manipulator system: analysis and experiment. IEEE Trans. Robot. Autom. 9(5), 675–684 (1993)

    Article  Google Scholar 

  12. Yi, Y., McInroy, J.E., Chen, Y.: Fault tolerance of parallel manipulators using task space and kinematic redundancy. IEEE Trans. Robot. 22(5), 1017–1021 (2006)

    Article  Google Scholar 

  13. Paredis, C.J.J., Khosla, P.K.: Designing fault-tolerant manipulators: how many degrees of freedom? Int. J. Robot. Res. 15(6), 611–628 (1996)

    Article  Google Scholar 

  14. Aghili, F., Parsa, K.: A reconfigurable robot with lockable cylindrical joints. IEEE Trans. Robot. 25(4), 785–797 (2009)

    Article  Google Scholar 

  15. Chen, Y., McInroy, J.E., Yi, Y.: Optimal, fault-tolerant mappings to achieve secondary goals without compromising primary performance. IEEE Trans. Robot. 19(4), 680–691 (2003)

    Article  Google Scholar 

  16. Lewis, C.L., Maciejewski, A.A.: Fault tolerant operation of kinematically redundant manipulators for locked joint failures. IEEE Trans. Robot. Autom. 13(4), 622–629 (1997)

    Article  Google Scholar 

  17. English, J.D., Maciejewski, A.A.: Fault tolerance for kinematically redundant manipulators: anticipating free-swinging joint failures. IEEE Trans. Robot. Autom. 14(4), 566–575 (1998)

    Article  Google Scholar 

  18. Sommese, A.J., Wampler, C.W.: Numerical algebraic geometry and algebraic kinematics. Acta Numerica 20, 469–567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sommese, A.J., Wampler, C.W.: The Numerical Solution to Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  20. Sommese, A., Verschelde, J., Wampler, C.W.: Advances in polynomial continuation for solving problems in kinematics. J. Mech. Des. 126(2), 262–268 (2004)

    Article  MathSciNet  Google Scholar 

  21. Wampler, C.W., Morgan, A.P.: Solving the kinematics of general 6R manipulators using polynomial continuation. In: Warwick, K. (ed.) Robotics: Applied Mathematics and Computational Aspects, pp. 57–69. Clarendon Press, Oxford (1993)

    Google Scholar 

  22. Wampler, C.W., Morgan, A.P., Sommese, A.J.: Complete solution of the nine-point path synthesis problem for four-bar linkages. J. Mech. Des. 114, 153–159 (1992)

    Article  Google Scholar 

  23. Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011)

    Article  MATH  Google Scholar 

  24. English, J.D., Maciejewski, A.A.: Measuring and reducing the Euclidean-space measures of robotic joint failures. IEEE Trans. Robot. Autom. 16(1), 20–28 (2000)

    Article  Google Scholar 

  25. English, J.D., Maciejewski, A.A.: Failure tolerance through active braking: a kinematic approach. Int. J. Rob. Res. 20(4), 287–299 (2001)

    Article  Google Scholar 

  26. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  27. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  28. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for Numerical Algebaic Geometry (2015). http://bertini.nd.edu

  29. Bates, D.J., Brake, D.A., Niemerg, M.: Paramatopy: Parallel parameter homotopy via Bertini (2015). http://www.paramotopy.com

  30. Brake, D.A., Bates, D.J., Putkaradze, V., Maciejewski, A.A.: Illustration of numerical algebraic methods for workspace estimation of cooperating robots after joint failure. In: IASTED Technology Conferences, Pittsburg, PN, USA, November 2010

    Google Scholar 

  31. Macho, E., Pinto, C., Amezua, E., Hernndez, A.: Software tool to compute, analyze and visualize workspaces of parallel kinematics robots. Adv. Robot. 25, 675–698 (2011)

    Article  Google Scholar 

  32. Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A., Wampler, C.W.: Bertini_real: Software for real algebraic sets (2015). http://www.bertinireal.com

  33. Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini_real: software for one- and two-dimensional real algebraic sets. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 175–182. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Bates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Brake, D.A., Bates, D.J., Putkaradze, V., Maciejewski, A.A. (2016). Workspace Multiplicity and Fault Tolerance of Cooperating Robots. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32859-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32858-4

  • Online ISBN: 978-3-319-32859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics