Abstract
Sobol’ indices are a common metric of dependency in sensitivity analysis. It is used as a measure of confidence of input variables influence on the output of the analyzed mathematical model. We consider a problem of selection of experimental design points for Sobol’ indices estimation. Based on the concept of D-optimality, we propose a method for constructing an adaptive design of experiments, effective for the calculation of Sobol’ indices from Polynomial Chaos Expansions. We provide a set of applications that demonstrate the efficiency of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beven, K.J.: Rainfall-Runoff Modelling-The Primer, p. 360. Wiley, Chichester (2000)
Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001)
Grihon, S., Burnaev, E.V., Belyaev, M.G., Prikhodko, P.V.: Surrogate modeling of stability constraints for optimization of composite structures. In: Koziel, S., Leifsson, L. (eds.) Surrogate-Based Modeling and Optimization. Engineering Applications, pp. 359–391. Springer, New York (2013)
Saltelli, A., Chan, K., Scott, M.: Sensitivity Analysis. Probability and Statistics Series. Wiley, West Sussex (2000)
Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991)
Iooss, B., Lemaitre, P.: A review on global sensitivity analysis methods. In: Meloni, C., Dellino, G. (eds.) Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications, pp. 101–122. Springer, New York (2010)
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al.: Global Sensitivity Analysis - The Primer. Wiley, Chichester (2008)
Yang, J.: Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environ. Modell. Softw. 26, 444–457 (2011)
Sudret, B.: Polynomial chaos expansions and stochastic finite element methods. In: Phoon, K.K., Ching, J. (eds.) Risk and Reliability in Geotechnical Engineering, Chap. 6, pp. 265–300. Taylor and Francis, London (2015)
Sobol’, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comp. Exp. 1, 407–414 (1993)
Saltelli, A., Annoni, P.: How to avoid a perfunctory sensitivity analysis. Environ. Modell. Softw. 25, 1508–1517 (2010)
Cukier, R.I., Levine, H.B., Shuler, K.E.: Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phy. 26(1), 1–42 (1978)
Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)
Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc., Ser. B 36, 111–147 (1974)
Marrel, A., Iooss, B., Laurent, B., Roustant, O.: Calculations of the Sobol indices for the Gaussian process metamodel. Reliab. Eng. Syst. Saf. 94, 742–751 (2009)
Burnaev, E., Zaitsev, A., Spokoiny, V.: Properties of the posterior distribution of a regression model based on Gaussian random fields. Autom. Remote Control 74(10), 1645–1655 (2013)
Burnaev, E., Zaytsev, A., Spokoiny, V.: The Bernstein-von Mises theorem for regression based on Gaussian processes. Russ. Math. Surv. 68(5), 954–956 (2013)
Belyaev, M., Burnaev, E., Kapushev, Y.: Gaussian process regression for structured data sets. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS, vol. 9047, pp. 106–115. Springer, Heidelberg (2015)
Dubreuila, S., Berveillerc, M., Petitjeanb, F., Salauna, M.: Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion. Reliab. Eng. Syst. Saf. 121, 263–275 (2014)
McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)
Ghiocel, D., Ghanem, R.: Stochastic finite element analysis of seismic soil-structure interaction. J. Eng. Mech. 128, 66–77 (2002)
Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Sys. Safety 93, 964–979 (2008)
Blatman, G., Sudret, B.: Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab. Eng. Sys. Saf. 95, 1216–1229 (2010)
Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Prob. Eng. Mech. 25, 183–197 (2010b)
Berveiller, M., Sudret, B., Lemaire, M.: Stochastic finite elements: a non intrusive approach by regression. Eur. J. Comput. Mech. 15(1–3), 81–92 (2006)
Hastie, T., Tibshirani, R., Friedman, J.: Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer-Verlag, New York (2009)
Spokoiny, V., Dickhaus, T.: Basics of Modern Parametric Statistics. Springer, Berlin (2014)
Oehlert, G.W.: A note on the delta method. Am. Stat. 46, 27–29 (1992)
Chaloner, K., Verdinelli, I.: Bayesian experimental design: a review. Stat. Sci. 10, 273–304 (1995)
Pronzato, L.: One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal. Metrika 71(2), 219–238 (2010)
Miller, A., Nguyen, N.K.: Algorithm AS 295: a fedorov exchange algorithm for D-optimal design. J. R. Stat. Soc. Ser. C (Appl. Stat. 43(4), 669–677 (1994)
Welch, B.L.: The generalization of “Student’s” problem when several different population variances are involved. Biometrika 34(12), 2835 (1947)
Burnaev, E., Panin, I.: Adaptive Design of Experiments for Sobol Indices Estimation Based on Quadratic Metamodel. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS, vol. 9047, pp. 86–95. Springer, Heidelberg (2015)
Burnaev, E., Panov, M.: Adaptive design of experiments based on gaussian processes. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS, vol. 9047, pp. 116–125. Springer, Heidelberg (2015)
Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley, Chichester (2008)
Lee, S., Kwak, B.: Response surface augmented moment method for efficient reliability analysis. Struct. Safe. 28, 261–272 (2006)
Konakli, K., Sudret, B.: Uncertainty quantification in high-dimensional spaces with low-rank tensor approximations. In: Proceedings of the 1st ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, Crete Island, Greece (2015)
Li, C., Der Kiureghian, A.: Optimal discretization of random fields. J. Eng. Mech. 119(6), 1136–1154 (1993)
Acknowledgments
The research was conducted in IITP RAS and supported solely by the Russian Science Foundation grant (project 14-50-00150).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Burnaev, E., Panin, I., Sudret, B. (2016). Effective Design for Sobol Indices Estimation Based on Polynomial Chaos Expansions. In: Gammerman, A., Luo, Z., Vega, J., Vovk, V. (eds) Conformal and Probabilistic Prediction with Applications. COPA 2016. Lecture Notes in Computer Science(), vol 9653. Springer, Cham. https://doi.org/10.1007/978-3-319-33395-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-33395-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-33394-6
Online ISBN: 978-3-319-33395-3
eBook Packages: Computer ScienceComputer Science (R0)