Skip to main content

On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9682))

Abstract

We describe an algorithm that finds an \(\epsilon \)-approximate solution to a concave mixed-integer quadratic programming problem. The running time of the proposed algorithm is polynomial in the size of the problem and in \(1/\epsilon \), provided that the number of integer variables and the number of negative eigenvalues of the objective function are fixed. The running time of the proposed algorithm is expected unless \(\mathcal {P}=\mathcal {NP}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellare, M., Rogaway, P.: The complexity of aproximating a nonlinear program. In: Pardalos, P.M. (ed.), Complexity in Numerical Optimization. World Scientific (1993)

    Google Scholar 

  2. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  3. Cook, W., Hartman, M., Kannan, R., McDiarmid, C.: On integer points in polyhedra. Combinatorica 12(1), 27–37 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cook, W.J., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Math. Program. 47(1–3), 155–174 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Klerk, E., Laurent, M., Parrilo, P.A.: A PTAS for the minimization of polynomials of fixed degree over the simplex. Theoret. Comput. Sci. 361, 210–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Del Pia, A., Dey, S.S., Molinaro, M.: Mixed-integer quadratic programming is in NP, Manuscript (2014)

    Google Scholar 

  7. Floudas, C.A., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization. Nonconvex Optimization and its Applications, vol. 2, pp. 217–269. Springer, New York (1995)

    Chapter  Google Scholar 

  8. Freund, R.M., Roundy, R., Todd, M.J.: Identifying the set of always-active constraints in a system of linear inequalities by a single linear program. Working Paper, pp. 1674–85, Sloan School of Management, MIT, Cambridge, MA (1985)

    Google Scholar 

  9. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD, USA (1996)

    MATH  Google Scholar 

  10. Heinz, S.: Complexity of integer quasiconvex polynomial optimization. J. Complex. 21, 543–556 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hildebrand, R., Köppe, M.: A new lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity \(2^{O(n \log n)}\). Discrete Optim. 10, 69–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hildebrand, R., Oertel, T., Weismantel, R.: Note on the complexity of the mixed-integer hull of a polyhedron. Oper. Res. Lett. 43, 279–282 (2015)

    Article  MathSciNet  Google Scholar 

  13. Khachiyan, L.G.: A polynomial algorithm in linear programming (in Russian). Doklady Akademii Nauk SSSR, 244, pp. 1093–1096 (1979). (English translation: Soviet Mathematics Doklady, 20, pp. 191–194, 1979)

    Google Scholar 

  14. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meyer, R.R.: On the existence of optimal solutions to integer and mixed-integer programming problems. Math. Program. 7(1), 223–235 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and linear programming. Math. Program. 39, 117–129 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley, Chichester (1983). Translated by E.R. Dawson from Slozhnost’ Zadach i Effektivnost’ Metodov Optimizatsii (1979)

    Google Scholar 

  18. Onn, S.: Convex discrete optimization. In: Chvátal, V. (ed.) Combinatorial Optimization: Observation of Strains. Infect Dis Ther. Methods Appl. 3(1), 35–43, pp. 183–228. IOS Press (2011)

    Google Scholar 

  19. Pardalos, P.M., Rosen, J.B. (eds.): Constrained Global Optimization: Algorithms and Applications. LNCS, vol. 268. Springer, Heidelberg (1987)

    Google Scholar 

  20. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Global Optim. 1(1), 15–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rosen, J.B., Pardalos, P.M.: Global minimization of large-scale constrained concave quadratic problems by separable programming. Math. Program. 34, 163–174 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sahni, S.: Computationally related problems. SIAM J. Comput. 3, 262–279 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  24. Vavasis, S.A.: Quadratic programming is in NP. Inform. Proces. Lett. 36, 73–77 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vavasis, S.A.: On approximation algorithms for concave quadratic programming. In: Floudas, C.A., Pardalos, P.M. (eds.) Recent Advances in Global Optimization, pp. 3–18. Princeton University Press, Princeton (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Del Pia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Del Pia, A. (2016). On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming. In: Louveaux, Q., Skutella, M. (eds) Integer Programming and Combinatorial Optimization. IPCO 2016. Lecture Notes in Computer Science(), vol 9682. Springer, Cham. https://doi.org/10.1007/978-3-319-33461-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33461-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33460-8

  • Online ISBN: 978-3-319-33461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics