Abstract
We describe an algorithm that finds an \(\epsilon \)-approximate solution to a concave mixed-integer quadratic programming problem. The running time of the proposed algorithm is polynomial in the size of the problem and in \(1/\epsilon \), provided that the number of integer variables and the number of negative eigenvalues of the objective function are fixed. The running time of the proposed algorithm is expected unless \(\mathcal {P}=\mathcal {NP}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bellare, M., Rogaway, P.: The complexity of aproximating a nonlinear program. In: Pardalos, P.M. (ed.), Complexity in Numerical Optimization. World Scientific (1993)
Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Heidelberg (2014)
Cook, W., Hartman, M., Kannan, R., McDiarmid, C.: On integer points in polyhedra. Combinatorica 12(1), 27–37 (1992)
Cook, W.J., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Math. Program. 47(1–3), 155–174 (1990)
de Klerk, E., Laurent, M., Parrilo, P.A.: A PTAS for the minimization of polynomials of fixed degree over the simplex. Theoret. Comput. Sci. 361, 210–225 (2006)
Del Pia, A., Dey, S.S., Molinaro, M.: Mixed-integer quadratic programming is in NP, Manuscript (2014)
Floudas, C.A., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization. Nonconvex Optimization and its Applications, vol. 2, pp. 217–269. Springer, New York (1995)
Freund, R.M., Roundy, R., Todd, M.J.: Identifying the set of always-active constraints in a system of linear inequalities by a single linear program. Working Paper, pp. 1674–85, Sloan School of Management, MIT, Cambridge, MA (1985)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD, USA (1996)
Heinz, S.: Complexity of integer quasiconvex polynomial optimization. J. Complex. 21, 543–556 (2005)
Hildebrand, R., Köppe, M.: A new lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity \(2^{O(n \log n)}\). Discrete Optim. 10, 69–84 (2013)
Hildebrand, R., Oertel, T., Weismantel, R.: Note on the complexity of the mixed-integer hull of a polyhedron. Oper. Res. Lett. 43, 279–282 (2015)
Khachiyan, L.G.: A polynomial algorithm in linear programming (in Russian). Doklady Akademii Nauk SSSR, 244, pp. 1093–1096 (1979). (English translation: Soviet Mathematics Doklady, 20, pp. 191–194, 1979)
Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)
Meyer, R.R.: On the existence of optimal solutions to integer and mixed-integer programming problems. Math. Program. 7(1), 223–235 (1974)
Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and linear programming. Math. Program. 39, 117–129 (1987)
Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley, Chichester (1983). Translated by E.R. Dawson from Slozhnost’ Zadach i Effektivnost’ Metodov Optimizatsii (1979)
Onn, S.: Convex discrete optimization. In: Chvátal, V. (ed.) Combinatorial Optimization: Observation of Strains. Infect Dis Ther. Methods Appl. 3(1), 35–43, pp. 183–228. IOS Press (2011)
Pardalos, P.M., Rosen, J.B. (eds.): Constrained Global Optimization: Algorithms and Applications. LNCS, vol. 268. Springer, Heidelberg (1987)
Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Global Optim. 1(1), 15–22 (1991)
Rosen, J.B., Pardalos, P.M.: Global minimization of large-scale constrained concave quadratic problems by separable programming. Math. Program. 34, 163–174 (1986)
Sahni, S.: Computationally related problems. SIAM J. Comput. 3, 262–279 (1974)
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
Vavasis, S.A.: Quadratic programming is in NP. Inform. Proces. Lett. 36, 73–77 (1990)
Vavasis, S.A.: On approximation algorithms for concave quadratic programming. In: Floudas, C.A., Pardalos, P.M. (eds.) Recent Advances in Global Optimization, pp. 3–18. Princeton University Press, Princeton (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Del Pia, A. (2016). On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming. In: Louveaux, Q., Skutella, M. (eds) Integer Programming and Combinatorial Optimization. IPCO 2016. Lecture Notes in Computer Science(), vol 9682. Springer, Cham. https://doi.org/10.1007/978-3-319-33461-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-33461-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-33460-8
Online ISBN: 978-3-319-33461-5
eBook Packages: Computer ScienceComputer Science (R0)