Abstract
In this paper, we propose an importance-sampling based method to obtain unbiased estimators to evaluate expectations involving random variables whose probability density functions are unknown while their Fourier transforms have explicit forms. We give a general principle about how to choose appropriate importance sampling density under various Lévy processes. Compared with the existing methods, our method avoids time-consuming numerical Fourier inversion and can be applied effectively to high dimensional option pricing under different models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abate, J., Whitt, W.: The fourier-series method for inverting transforms of probability distributions. Queueing Syst. 10(1–2), 5–87 (1992)
Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis, vol. 57. Springer Science & Business Media, New York (2007)
Barndorff-Nielsen, O.E.: Processes of normal inverse gaussian type. Financ. Stoch. 2(1), 41–68 (1997)
Biagini, F., Bregman, Y., Meyer-Brandis, T.: Pricing of catastrophe insurance options written on a loss index with reestimation. Insur.: Math. Econ. 43(2), 214–222 (2008)
Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Financ. 2(4), 61–73 (1999)
Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–333 (2002)
Chambers, J.M., Mallows, C.L., Stuck, B.: A method for simulating stable random variables. J. Am. Stat. Assoc. 71(354), 340–344 (1976)
Chen, N., Hong, L.J.: Monte Carlo simulation in financial engineering. In: Proceedings of the 39th Conference on Winter Simulation, pp. 919–931. IEEE Press (2007)
Chen, Z., Feng, L., Lin, X.: Simulating Lévy processes from their characteristic functions and financial applications. ACM Trans. Model. Comput. Simul. (TOMACS) 22(3), 14 (2012)
Feng, L., Lin, X.: Inverting analytic characteristic functions and financial applications. SIAM J. Financ. Math. 4(1), 372–398 (2013)
Feng, L., Linetsky, V.: Pricing discretely monitored barrier options and defaultable bonds in Lévy process models: a fast Hilbert transform approach. Math. Financ. 18(3), 337–384 (2008)
Glasserman, P.: Monte Carlo Methods in Financial Engineering, vol. 53. Springer, New York (2004)
Glasserman, P., Liu, Z.: Sensitivity estimates from characteristic functions. Oper. Res. 58(6), 1611–1623 (2010)
Hurd, T.R., Zhou, Z.: A Fourier transform method for spread option pricing. SIAM J. Financ. Math. 1(1), 142–157 (2010)
Kawai, R., Masuda, H.: On simulation of tempered stable random variates. J. Comput. Appl. Math. 235(8), 2873–2887 (2011)
Kou, S., Petrella, G., Wang, H.: Pricing path-dependent options with jump risk via Laplace transforms. Kyoto Econ. Rev. 74(1), 1–23 (2005)
Kwok, Y.K., Leung, K.S., Wong, H.Y.: Efficient options pricing using the fast Fourier transform. Handbook of Computational Finance, pp. 579–604. Springer, Heidelberg (2012)
L’Ecuyer, P.: Non-uniform random variate generations. International Encyclopedia of Statistical Science, pp. 991–995. Springer, New York (2011)
Lee, R.W., et al.: Option pricing by transform methods: extensions, unification and error control. J. Comput. Financ. 7(3), 51–86 (2004)
Lewis, A.L.: A simple option formula for general jump-diffusion and other exponential Lévy processes. Available at SSRN 282110 (2001)
Lord, R., Kahl, C.: Optimal Fourier inversion in semi-analytical option pricing (2007)
Poirot, J., Tankov, P.: Monte Carlo option pricing for tempered stable (CGMY) processes. Asia-Pac. Financ. Mark. 13(4), 327–344 (2006)
Rudin, W.: Real and Complex Analysis. Tata McGraw-Hill Education, New York (1987)
Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)
Staum, J.: Monte Carlo computation in finance. Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 19–42. Springer, New York (2009)
Tankov, P.: Financial Modelling with Jump Processes, vol. 2. CRC Press, Boca Raton (2004)
Acknowledgments
The research by Denis Belomestny was made in IITP RAS and supported by Russian Scientific Foundation grant (project N 14-50-00150). The second and third authors are grateful for the financial support of a GRF grant from HK SAR government (Grant ID: CUHK411113).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Belomestny, D., Chen, N., Wang, Y. (2016). Unbiased Simulation of Distributions with Explicitly Known Integral Transforms. In: Cools, R., Nuyens, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods. Springer Proceedings in Mathematics & Statistics, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-33507-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-33507-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-33505-6
Online ISBN: 978-3-319-33507-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)