Skip to main content

From Public Plans to Global Solutions in Multiagent Planning

  • Conference paper
  • First Online:
Multi-Agent Systems and Agreement Technologies (EUMAS 2015, AT 2015)

Abstract

Multiagent planning addresses the problem of coordinated sequential decision making of a team of cooperative agents. One possible approach to multiagent planning, which proved to be very efficient in practice, is to find an acceptable public plan. The approach works in two stages. At first, a public plan acceptable to all the involved agents is computed. Then, in the second stage, the public solution is extended to a global solution by filling in internal information by every agent. In the recently proposed distributed multiagent planner, the winner of the Competition of Distributed Multiagent Planners (CoDMAP 2015), this principle was utilized, however with unnecessary use of combination of both public and internal information for extension of the public solution.

In this work, we improve the planning algorithm by enhancements of the global solution reconstruction phase. We propose a new method of global solution reconstruction which increases efficiency by restriction to internal information. Additionally, we employ reduction techniques downsizing the input planning problem. Finally, we experimentally evaluate the resulting planner and prove its superiority when compared to the previous approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://agents.fel.cvut.cz/codmap for more info about CoDMAP’15.

  2. 2.

    Note, that agents are defined only by their actions and thus \(\alpha _i\) represents both the agent and the actions it can perform.

  3. 3.

    The last Wireless domain is not supported by the planner parser.

References

  1. Bäckström, C., Jonsson, A., Jonsson, P.: Macros, reactive plans and compact representations. In: Raedt, L.D., Bessière, C., Dubois, D.,Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI 2012. Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 85–90. IOS Press (2012). http://dx.doi.org/10.3233/978-1-61499-098-7-85

  2. Brafman, R., Domshlak, C.: From one to many: planning for loosely coupled multi-agent systems. In: Proceedings of ICAPS 2008, vol. 8, pp. 28–35 (2008)

    Google Scholar 

  3. Brafman, R.I., Domshlak, C.: From one to many: planning for loosely coupled multi-agent systems. In: Proceedings of ICAPS 2008, pp. 28–35 (2008)

    Google Scholar 

  4. Chen, Y., Yao, G.: Completeness and optimality preserving reduction for planning. In: Proceedings of 21st IJCAI, pp. 1659–1664 (2009)

    Google Scholar 

  5. Coles, A., Coles, A.: Completeness-preserving pruning for optimal planning. In: Proceedings of 19th ECAI, pp. 965–966 (2010)

    Google Scholar 

  6. Fabre, E., Jezequel, L., Haslum, P., Thiébaux, S.: Cost-optimal factored planning: promises and pitfalls. In: Proceedings of the 20th International Conference on Automated Planning and Scheduling, ICAPPS 2010, Toronto, Ontario, Canada, May 12–16, 2010, pp. 65–72 (2010)

    Google Scholar 

  7. Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem proving to problem solving. In: Proceedings of the 2nd International Joint Conference on Artificial Intelligence, pp. 608–620 (1971)

    Google Scholar 

  8. Haslum, P.: Reducing accidental complexity in planning problems. In: Proceedings of 20th IJCAI, pp. 1898–1903 (2007)

    Google Scholar 

  9. Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191–246 (2006)

    Article  MATH  Google Scholar 

  10. Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through heuristic search. JAIR 14, 253–302 (2001)

    MATH  Google Scholar 

  11. Jakubův, J., Tožička, J., Komenda, A.: Multiagent planning by planset intersection and plan verification. In: ICAART 2015 - Proceedings of the International Conference on Agents and Artificial Intelligence, Lisbon, Portugal, 10–12 January, 2015, vol. 2, pp. 173–182 (2015)

    Google Scholar 

  12. Jakubův, J., Tožička, J., Komenda, A.: On internally dependent public actions in multiagent planning. In: Proceedings of 3rd DMAP Workshop (ICAPS 2015) (2015)

    Google Scholar 

  13. Jonsson, A.: The role of macros in tractable planning. J. Artif. Intell. Res. 36, 471–511 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco (2004)

    MATH  Google Scholar 

  15. Nissim, R., Apsel, U., Brafman, R.: Tunneling and decomposition-based state reduction for optimal planning. In: Proceedings of 20th ECAI, pp. 624–629 (2012). http://www.cs.bgu.ac.il/~apsel/files/decomp_ecai12.pdf

  16. Nissim, R., Brafman, R.: Distributed heuristic forward search for multi-agent planning. JAIR 51, 293–332 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Nissim, R., Brafman, R.I., Domshlak, C.: A general, fully distributed multi-agent planning algorithm. In: Proceedings of AAMAS, pp. 1323–1330 (2010)

    Google Scholar 

  18. Richter, S., Westphal, M.: The lama planner: guiding cost-based anytime planning with landmarks. J. Artif. Intell. Res. 39(1), 127–177 (2010)

    MATH  Google Scholar 

  19. Tožička, J., Jakubův, J., Durkota, K., Komenda, A., Pechoucek, M.: Multiagent planning supported by plan diversity metrics and landmark actions. In: ICAART 2014 - Proceedings of the 6th International Conference on Agents and Artificial Intelligence, ESEO, Angers, Loire Valley, France, 6–8 March, 2014, vol. 1, pp. 178–189 (2014). http://dx.doi.org/10.5220/0004918701780189

  20. Tožička, J., Jakubův, J., Komenda, A.: Generating multi-agent plans by distributed intersection of finite state machines. In: ECAI 2014 - 21st European Conference on Artificial Intelligence, 18–22 August 2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS 2014), pp. 1111–1112 (2014)

    Google Scholar 

  21. Tožička, J., Jakubův, J., Komenda, A.: PSM-based planners description for CoDMAP 2015 competition. In: Proceedings of the Competition of Distributed and Multi-agent Planners (CoDMAP 2015), pp. 29–32 (2015)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Science Foundation (grant no. 13-22125S) and by the Ministry of Education of the Czech Republic within the SGS project (no. SGS13/211/OHK3/3T/13). Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the program “Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005), is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tožička .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tožička, J., Jakubův, J., Komenda, A. (2016). From Public Plans to Global Solutions in Multiagent Planning. In: Rovatsos, M., Vouros, G., Julian, V. (eds) Multi-Agent Systems and Agreement Technologies. EUMAS AT 2015 2015. Lecture Notes in Computer Science(), vol 9571. Springer, Cham. https://doi.org/10.1007/978-3-319-33509-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33509-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33508-7

  • Online ISBN: 978-3-319-33509-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics