Abstract
In the attempt to implement applications of public utility which simplify the user access to future, remote and nearby social services, new mathematical models and new psychological and computational approaches from existing cognitive frameworks and algorithmic solutions have been developed. The nature of these instruments is either deterministic, probabilistic, or both. Their use depends upon their contribute to the conception of new ICT functionalities and evaluation methods for modelling concepts of learning, reasoning, and data interpretation. This introductory chapter provide a brief overview on the theoretical and computational issues of such artificial intelligent methods and how they are applied to several research problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
NP-complete and NP-hard problems, where NP indicates that the problem has a Non Polynomial solution either in terms of computational time or of memory occupancy, or both.
References
Esposito, A.: The importance of data for training intelligent devices. In: Apolloni, B., Kurfess, C. (eds) From Synapses to Rules: Discovering Symbolic Knowledge from Neural Processed Data, pp. 229–250. Kluwer Academic press (2002)
Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)
Herzog, A., Pastor, P., Kalakrishnan, M., et al.: Template-based learning of grasp selection. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2379– 2384, Saint Paul, MN (USA) (2012)
Gutkin, A., King, S.: Inductive string template-based learning of spoken language (2005). https://www.era.lib.ed.ac.uk/handle/1842/932
Brunelli, R.: Template Matching Techniques in Computer Vision: Theory and Practice. Wiley (2009). ISBN: 978-0-470-51706-2
Cacciola, M., Calcagno, S., Morabito, F.C., Versaci, M.: Computational intelligence aspects for defect classification in aeronautic composites by using ultrasonic pulse. IEEE Trans. Ultrason. Ferroelectr. Freq Control, 55(4), 870–878 (2008)
Yuen, C.T., Rizon, M., San, W.S., Seong, T.C.: Facial features for template matching based face recognition. Am. J. Eng. Appl. Sci. 3(1) 899–903 (2010)
Tahmasebi, P., Hezarkhani, A., Sahimi, M.: Multiple-point geostatistical modeling based on the cross-correlation functions. Comput. Geosci. 16(3), 779–797 (2012)
De Wachter, M., Matton, M., et al.: Template-based continuous speech recognition. IEEE Trans. Audio Speech Lang. Process. 15(4), 1377–1390 (2007)
Sniedovich, M.: Dynamic Programming: Foundations and principles. Taylor & Francis (2010)
Rabiner, L.R., Levinson, S.E.: Isolated and connected word recognition: theory and selected applications. IEEE Trans. Commun. 29(5), 621–659 (1981)
Goldinger, S.D.: Words and voices: episodic traces in spoken word identification and recognition memory. J. Exp. Psychol. Learn. Memory Cogn. 33, 1166–1183 (1996)
Jacoby, L., Hayman, C.: Specific visual transfer in word identification. J. Exp. Psychol. Learn. Memory Cogn. 13, 456–463 (1987)
Esposito, A., Esposito, A.M.: On speech and gesture synchrony. In: Esposito, A., et al. (eds.) Analysis of Verbal and Nonverbal Communication and Enactment: The Processing Issue. LNCS vol. 6800, pp. 252–272. Springer, Heidelberg (2011). ISBN: 978-3-642-25774-2
Esposito, A., Marinaro, M.: What pauses can tell us about speech and gesture partnership. In: Esposito, A., et al. (eds) Fundamentals of Verbal and Nonverbal Communication and the Biometric Issue. NATO Publishing Series, Human and Societal Dynamics, vol. 18,pp. 45−57. IOS press, The Netherlands (2007)
Aradilla, G., Vepa, J., Bourlard, H.: Improving speech recognition using a data-driven approach. In: Proceedings of EUROSPEECH, Lisbon, pp. 3333−3336 (2005)
De Wachter, M., Demuynck, K., Wambacq, P., Van Compernolle, D.: A locally weighted distance measure for example based speech recognition. In Proceedings of ICASSP, pp. 181–184, Montreal, Canada (2004)
Hawkins.: Contribution of fine phonetic detail to speech understanding. In: Proceedings of 15th International Congress of Phonetic Sciences (ICPhS03), pp. 293–296, Barcelona, Spain (2003)
Maier, V., Moore, R.K.: An investigation into a simulation of episodic memory for automatic speech recognition. In: Proceedings of Interspeech-2005, pp. 1245–1248, Lisbon (2005)
Matton, M., De Wachter, M., Van Compernolle, D., Cools, R.: Maximum mutual information training of distance measures for template based speech recognition. In: Proceedings of International Conference on Speech and Computer, pp. 511−514, Patras, Greece (2005)
Strik, H.: How to handle pronunciation variation in ASR: by storing episodes in memory? In: Proceedings of ITRW on Speech Recognition and Intrinsic Variation (SRIV2006), pp. 33–38, Toulouse, France (2006)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
Morabito, F.C.: Independent component analysis and feature extraction for NDT data. Mater. Eval. 58(1), 85–92 (2000)
Labate, D., La Foresta, F., Morabito, G., Palamara, I., Morabito, F.C.: On the use of empirical mode decomposition (EMD) for Alzheimer’s disease diagnosis. In: Smart Innovation, Systems and Technologies, vol. 37, pp. 121−128 (2015)
Aversano, G., Esposito, A.: Automatic parameter estimation for a context-independent speech segmentation algorithm. In: Sojka, P., et al. (eds) Text Speech and Dialogue, LNAI 2448, 293–300. Springer, Heidelberg (2002)
Esposito, A., Aversano, G.: Text independent methods for speech segmentation. In: Chollet, G., et al. (eds) Nonlinear Speech Modeling and Applications. Lectures Notes in Computer Science, vol. 3445, pp. 261–290. Springer, Heidelberg (2005)
Atassi, H., Smékal, Z., Esposito, A.: Emotion recognition from spontaneous Slavic speech. In: Proceedings of 3rd IEEE Interernational Conference on Cognitive Infocommunications (CogInfoCom2012), pp. 389–394, Kosice, Slovakia (2012)
Pudil, P., Novovicová, J., Kittler, K.: Floating search methods in feature selection. Patt. Recogn. Lett. 15(11), 1119–1125 (1994)
Atassi, H., Esposito, A: Speaker independent approach to the classification of emotional vocal expressions. In: Proceedings of IEEE Conference on Tools with Artificial Intelligence (ICTAI 2008), vol. 1, pp. 487–494, Dayton, OH, USA, 3−5 Nov 2008
Bengio, Y.: learning deep architectures for AI. In: Foundations and Trends in Machine Learning, vol. 2, no. 1, pp. 1–127 (2009)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)
Mammone, N., Labate, D., Lay-Ekuakille, A., Morabito, F.C.: Analysis of absence seizure generation using EEG spatial-temporal regularity measures, Int. J. Neural Syst. 22(6), art. no. 1250024 (2012)
Morabito, F.C., Campolo, M., Labate, D., Morabito, G., Bonanno, L., Bramanti, A.: De Salvo, S., Bramanti, P.: A longitudinal EEG study of Alzheimer’s disease progression based on a complex network approach. Int. J. Neural Syst. 25(2), art.no. 1550005 (2015)
Schuller, B.: Deep learning our everyday emotions: a short overview. In: Bassis, et al. (eds) Advances in Neural Networks: Computational and Theoretical Issues. SIST Series, vol. 37, pp. 339–346. Springer, Heidelberg (2015)
Frankel, J., King, S.: Speech recognition using linear dynamic models. IEEE Trans. Audio Speech Lang. Process. 15(1), 246–256 (2007)
Lee, C.H.: On automatic speech recognition at the dawn of the 21st century. IEICE Trans. Inf. Syst. E86-D (3) 377–396 (2003). Special Issue on Speech Information Processing
Wong, K.C., Chan, T.M., Peng, C., Li, Y., Zhang, Z.: DNA motif elucidation using belief propagation. Nucleic Acids Res. 41(16), e153 (2013)
Nicolai, C., Sachs, F.: Solving ion channel kinetics with the Qub software. Biophys. Rev. Lett. 08, 191–211 (2013)
Boudaren, M.Y., Monfrini, E., Pieczynski, W.: Unsupervised segmentation of random discrete data hidden with switching noise distributions. IEEE Signal Process. Lett. 19(10), 619–622 (2012)
Fink, GA.: Markov Models for Pattern Recognition—From Theory to Applications. Advances in Computer Vision and Pattern Recognition, pp. 1–253. Springer (2014)
Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)
Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems: a survey. IEEE Syst. J. 9(2), 350–365 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Esposito, A., Bassis, S., Morabito, F.C., Pasero, E. (2016). Some Notes on Computational and Theoretical Issues in Artificial Intelligence and Machine Learning. In: Bassis, S., Esposito, A., Morabito, F., Pasero, E. (eds) Advances in Neural Networks. WIRN 2015. Smart Innovation, Systems and Technologies, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-33747-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-33747-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-33746-3
Online ISBN: 978-3-319-33747-0
eBook Packages: EngineeringEngineering (R0)