Skip to main content

Representation and Visualization of Imperfect Geohistorical Data About Natural Risks: A Qualitative Classification and Its Experimental Assessment

  • Conference paper
  • First Online:
Geospatial Data in a Changing World

Abstract

Imperfections, often called ‘uncertainties’, exist in almost every spatio-temporal dataset, especially in historical data. They are of different types (unreliability, inaccuracy…) and concern every data dimension (space, time and theme). Based on previous work, this article proposes a synthesis qualitative classification of imperfection types. This classification has been assessed with domain experts (hydrologists, geophysicians and GIScientists working in a railway company) during an experiment, that gave positive results towards the use of this classification. Participants were also asked to evaluate the seriousness of each imperfection type in an analysis context. This evaluation has allowed to associate a quantitative index to each imperfection type and to visualize a quantity of imperfection attached to each spatial object in a map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This hypothesis of equal importance for each data dimension needs to be assessed with users. It is currently a work in progress.

References

  • Arnaud A (2009) Valorisation de l’information dédiée aux événements de territoires à risque. Une application cartographique et géovisualisation de la couronne grenobloise. Université Joseph Fourrier, Grenoble

    Google Scholar 

  • Arnaud A, Davoine P-A (2011) Approche cartographique et géovisualisation pour la représentation de l’incertitude: Application à l’information dédiée aux risques naturels. Rev Int Géomatique 21:205–224. doi:10.3166/rig.21.205-224

    Article  Google Scholar 

  • Bodin X (2002) La représentation des incertitudes spatiales de la carte de localisation probable des avalanches

    Google Scholar 

  • Buttenfield BP (1993) Representing data quality. Cartographica 30:1–7. doi:10.3138/232H-6766-3723-5114

    Article  Google Scholar 

  • Buttenfield BP (1988) Visualizing the quality of cartographic data. In: Third international geographical information systems symposium (GIS/LIS 88), San Antonio (USA)

    Google Scholar 

  • Cliburn DC, Feddema JJ, Miller JR, Slocum TA (2002) Design and evaluation of a decision support system in a water balance application. Comput Graph 26:931–949. doi:10.1016/S0097-8493(02)00181-4

    Article  Google Scholar 

  • Griethe H, Schumann H (2006) The visualization of uncertain data: Methods and problems. In: Simulation and visualization, Magdeburg (Germany)

    Google Scholar 

  • ISO/Technical Committee 211 (2013) ISO 19157: Information géographique - Qualité des données. http://www.iso.org/iso/fr/home/store/catalogue_tc/catalogue_detail.htm?csnumber=32575. Accessed 13 Jan 2015

  • Kinkeldey C, Maceachren AM, Riveiro M, Schiewe J (2015) Evaluating the effect of visually represented geodata uncertainty on decision-making: systematic review, lessons learned, and recommendations. Cartogr Geogr Inf Sci. doi:10.1080/15230406.2015.1089792

    Google Scholar 

  • Lowell KE (1997) Outside-in, inside-out: two methods of generating spatial certainty maps. In: Second annual conference of GeoComputation, Dunedin (New Zealand)

    Google Scholar 

  • MacEachren AM, Robinson A, Hopper S et al (2005) Visualizing geospatial information uncertainty: what we know and what we need to know. Cartogr Geogr Inf Sci 32:139–160. doi:10.1559/1523040054738936

    Article  Google Scholar 

  • MacEachren AM, Roth RE, O’Brien J et al (2012) Visual semiotics & uncertainty visualization: an empirical study. IEEE Trans Vis Comput Graph 18:2496–2505. doi:10.1109/TVCG.2012.279

    Article  Google Scholar 

  • Nardo M, Saisana M, Saltelli A et al (2008) Handbook on constructing composite indicators: methodology and user guide

    Google Scholar 

  • O’Brien O, Cheshire J (2014) Mapping Geodemographic classification uncertainty: an exploration of visual techniques using compositing operations. In: Workshop “Visually-Supported Reasoning with Uncertainty”, GIScience 2014, Vienna (Austria)

    Google Scholar 

  • Olston C, Mackinlay JD (2002) Visualizing data with bounded uncertainty. IEEE Symp Inf Vis 2002 INFOVIS 2002 1–8. doi:10.1109/INFVIS.2002.1173145

  • Pang AT (2008) Visualizing uncertainty in natural hazards. Risk Assess Model Decis Supp 14:261–294. doi:10.1007/978-3-540-71158-2_12

    Article  Google Scholar 

  • Plew B (2002) The nature of uncertainty in historical geographic information. Trans GIS 6(4):431–456

    Article  Google Scholar 

  • Pornon H (1992) Les SIG, mise en oeuvre et applications. Hermes Science Publications, Paris (France)

    Google Scholar 

  • Potter K, Rosen P, Johnson CR (2012) From quantification to visualization: a taxonomy of uncertainty visualization approaches. In: Uncertainty quantification in scientific computing. Springer, pp 226–249

    Google Scholar 

  • Saisana M, Tarantola S (2002) State-of-the-art report on current methodologies and practices for composite indicator development, Italy

    Google Scholar 

  • Schneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualization. In: IEEE Workshop on visual languages’96, pp 336–343

    Google Scholar 

  • Seccia G, Cunty C, Chesneau É, et al (2014) Évaluer des modes de représentation cartographique de l’incertitude: Exemple d’utilisation de méthodes des sciences cognitives. In: Sageo 2014, Grenoble (France), p 5

    Google Scholar 

  • Skeels M, Lee B, Smith G, Robertson G (2008) Revealing uncertainty for information visualization. In: working conference on advanced visual interfaces—AVI ’08. ACM Press, Napoli (Italy), pp 376–379

    Google Scholar 

  • Smets P (1997) Imperfect information: imprecision—uncertainty. In: Smets P, Motro A (eds) Uncertainty management in information systems. From needs to solutions. Kluwer Academic Publishers, Berlin, pp 225–254

    Chapter  Google Scholar 

  • Snoussi M, Gensel J, Davoine P-A (2012) Extending TimeML and SpatialML languages to handle imperfect spatio-temporal information in the context of natural hazards studies. In: Gensel J, Josselin D, Vandenbroucke D (eds) Proceedings of AGILE’2012 conference. Springer, Avignon (France), pp 117–122

    Google Scholar 

  • Thomson J, Hetzler E, MacEachren AM et al (2005) A typology for visualizing uncertainty. In: Erbacher RF, Roberts JC, Grohn MT, Borner K (eds) SPIE, visualization and data analysis 2005. SPIE, San Jose (CA, USA), pp 146–157

    Chapter  Google Scholar 

  • Veregin H (1989) Error modelling for the map overlay operation. In: Goodchild MF, Gopal S (eds) Accuracy of spatial databases. Taylor and Francis, pp 3–19

    Google Scholar 

  • Zoghlami A, De Runz C, Akdag H, Pargny D (2012) Through a fuzzy spatiotemporal information system for handling excavation data. In: Gensel J, Josselin D, Vandenbroucke D (eds) International Agile’2012 conference. Springer, Berlin, pp 179–196

    Google Scholar 

Download references

Acknowledgments

We would like to thank SNCF Company for their implication in this research project. Many thanks to the twelve railway experts who took a little of their working time to participate in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Saint-Marc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Saint-Marc, C., Villanova-Oliver, M., Davoine, PA., Capoccioni, C.P., Chenier, D. (2016). Representation and Visualization of Imperfect Geohistorical Data About Natural Risks: A Qualitative Classification and Its Experimental Assessment. In: Sarjakoski, T., Santos, M., Sarjakoski, L. (eds) Geospatial Data in a Changing World. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-33783-8_14

Download citation

Publish with us

Policies and ethics