Skip to main content

Quantitative Abstractions for Collective Adaptive Systems

  • Chapter
  • First Online:
Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems (SFM 2016)

Abstract

Collective adaptive systems (CAS) consist of a large number of possibly heterogeneous entities evolving according to local interactions that may operate across multiple scales in time and space. The adaptation to changes in the environment, as well as the highly dispersed decision-making process, often leads to emergent behaviour that cannot be understood by simply analysing the objectives, properties, and dynamics of the individual entities in isolation.

As with most complex systems, modelling is a phase of crucial importance for the design of new CAS or the understanding of existing ones. Elsewhere in this volume the typical workflow of formal modelling, analysis, and evaluation of a CAS has been illustrated in detail. In this chapter we treat the problem of efficiently analysing large-scale CAS for quantitative properties. We review algorithms to automatically reduce the dimensionality of a CAS model preserving modeller-defined state variables, with focus on descriptions based on systems of ordinary differential equations. We illustrate the theory in a tutorial fashion, with running examples and a number of more substantial case studies ranging from crowd dynamics, epidemiology and biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the paper we will work with autonomous ODE systems, which are not explicitly dependent on time.

  2. 2.

    Note that \([s_i]\cdot [s_i]\) should actually be \([s_i]\cdot ([s_i] - 1)\), since an individual cannot meet itself. However, this is irrelevant for large populations, and hence, as for existing ODE-based semantics in the biological context [78], we approximate it to \([s_i]\cdot [s_i]\).

References

  1. Aldini, A., Bravetti, M., Gorrieri, R.: A process-algebraic approach for the analysis of probabilistic noninterference. J. Comput. Secur. 12(2), 191–245 (2004)

    Article  Google Scholar 

  2. Aoki, M.: Control of large-scale dynamic systems by aggregation. IEEE Trans. Autom. Control 13(3), 246–253 (1968)

    Article  Google Scholar 

  3. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, IOS Press, Amsterdam (2009)

    Google Scholar 

  5. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. Technical report, Department of Computer Science, The University of Iowa (2010). www.SMT-LIB.org

  6. Barua, D., Hlavacek, W.S.: Modeling the effect of APC truncation on destruction complex function in colorectal cancer cells. PLoS Comput. Biol. 9(9), e1003217 (2013)

    Article  Google Scholar 

  7. Berdine, J., Bjørner, N.: Computing all implied equalities via SMT-based partition refinement. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 168–183. Springer, Heidelberg (2014)

    Google Scholar 

  8. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)

    Article  Google Scholar 

  9. Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hillston, J., Latella, D., Loreti, M., Massink, M.: CARMA: collective adaptive resource-sharing Markovian agents. In: QAPL, pp. 16–31 (2015)

    Google Scholar 

  10. Bortolussi, L., Gast, N.: Scalable quantitative analysis: fluid and hybrid approximations. In: SFM (2016)

    Google Scholar 

  11. Bortolussi, L., Latella, D., Massink, M.: Stochastic process algebra and stability analysis of collective systems. In: De Nicola, R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 1–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Bortolussi, L., Le Boudec, J.Y., Latella, D., Massink, M.: Revisiting the limit behaviour of “El Botellon”. Technical report (2012). http://infoscience.epfl.ch/record/179935/

  13. van Breugel, F., Worrell, J.: Approximating and computing behavioural distances in probabilistic transition systems. Theor. Comput. Sci. 360(1–3), 373–385 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31(1), 59–75 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Camporesi, F., Feret, J.: Formal reduction for rule-based models. Electron. Notes Theoret. Comp. Sci. 276, 29–59 (2011)

    Article  MathSciNet  Google Scholar 

  16. Camporesi, F., Feret, J., Koeppl, H., Petrov, T.: Combining model reductions. Electron. Notes Theoret. Comp. Sci. 265, 73–96 (2010)

    Article  MathSciNet  Google Scholar 

  17. Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 8(1), 84 (2014)

    Article  Google Scholar 

  18. Cardelli, L., Csikász-Nagy, A., Dalchau, N., Tribastone, M., Tschaikowski, M.: Noise reduction in complex biological switches. Scientific reports 6, 20214 EP (February 2016). http://dx.doi.org/10.1038/srep20214

  19. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical reaction networks. In: CONCUR (2015)

    Google Scholar 

  20. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven lumping of differential equations. In: TACAS (2016, to appear)

    Google Scholar 

  21. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. In: POPL (2016)

    Google Scholar 

  22. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. TCS 410(33–34), 3065–3084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Conzelmann, H., Fey, D., Gilles, E.: Exact model reduction of combinatorial reaction networks. BMC Syst. Biol. 2(1), 78 (2008)

    Article  Google Scholar 

  24. Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B., Gilles, E.: A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinform. 7(1), 34 (2006)

    Article  Google Scholar 

  25. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: exact and automated model reduction. In: LICS, pp. 362–381 (2010)

    Google Scholar 

  26. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based transition systems for stochastic process calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 435–446. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic systems programming: the SCEL language. TAAS 9(2), 7:1–7:29 (2014)

    Article  Google Scholar 

  29. Dehnert, C., Katoen, J.-P., Parker, D.: SMT-based bisimulation minimisation of Markov models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 28–47. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  30. DeMaio, P.: Bike-sharing: history, impacts, models of provision, and future. J. Publ. Transp. 14(4), 41–56 (2009)

    Article  MathSciNet  Google Scholar 

  31. Derisavi, S., Hermanns, H., Sanders, W.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Feng, C., Hillston, J.: Automatic moment-closure approximation of spatially distributed collective adaptive systems. ACM Trans. Model. Comput. Simul. (to appear)

    Google Scholar 

  33. Feng, C., Hillston, J.: PALOMA: a process algebra for located Markovian agents. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 265–280. Springer, Heidelberg (2014)

    Google Scholar 

  34. Feret, J.: Fragments-based model reduction: some case studies. Electron. Notes Theoret. Comput. Sci. 268, 77–96 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proc. Nat. Acad. Sci. 106(16), 6453–6458 (2009)

    Article  Google Scholar 

  36. Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-based systems. Theoret. Comput. Sci. 431, 137–164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fricker, C., Gast, N.: Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. EURO J. Transp. Logist. 1–31 (2014). doi:10.1007/s13676-014-0053-5

    Google Scholar 

  38. Galpin, V.: Spatial representations and analysis techniques. In: SFM (2016)

    Google Scholar 

  39. Gao, S., Kong, S., Clarke, E.: Satisfiability modulo ODEs. In: FMCAD, pp. 105–112 (2013)

    Google Scholar 

  40. Grosu, R., Bartocci, E.: Spatio-temporal model checking. In: SFM (2016)

    Google Scholar 

  41. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. In: PLDI, pp. 62–73 (2011)

    Google Scholar 

  42. Gupta, V., Jagadeesan, R., Panangaden, P.: Approximate reasoning for real-time probabilistic processes. Log. Methods Comput. Sci. 2(1) (2006)

    Google Scholar 

  43. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process algebra. Theoret. Comput. Sci. 411(22–24), 2260–2297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hillston, J.: A compositional approach to performance modelling. In: CUP (1996)

    Google Scholar 

  45. Hillston, J.: Fluid flow approximation of PEPA models. In: QEST, pp. 33–43, September 2005

    Google Scholar 

  46. Iacobelli, G., Tribastone, M.: Lumpability of fluid models with heterogeneous agent types. In: DSN, pp. 1–11 (2013)

    Google Scholar 

  47. Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian process algebra. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 293–306. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  48. Iwasa, Y., Andreasen, V., Levin, S.: Aggregation in model ecosystems. I. Perfect aggregation. Ecol. Model. 37(3–4), 287–302 (1987)

    Article  MATH  Google Scholar 

  49. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  50. Katoen, J., Khattri, M., Zapreev, I.: A Markov reward model checker. In: QEST, pp. 243–244 (2005)

    Google Scholar 

  51. Kermack, W.O., McKendrick, A.: Contribution to the mathematical theory of epidemics. Proc. Roy. Soc. Lond. Ser. A Containing Papers Math. Phys. Charact. 115(772), 700–721 (1927)

    Article  MATH  Google Scholar 

  52. Kocieniewski, P., Faeder, J.R., Lipniacki, T.: The interplay of double phosphorylation and scaffolding in MAPK pathways. J. Theor. Biol. 295, 116–124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Köksal, A.S., Kuncak, V., Suter, P.: Constraints as control. In: POPL, pp. 151–164 (2012)

    Google Scholar 

  54. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  55. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  56. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic optimization with SMT solvers. In: POPL, pp. 607–618 (2014)

    Google Scholar 

  57. Loreti, M., Hillston, J.: Modeling and analysis of collective adaptive systems with CARMA and its tools. In: SFM (2016)

    Google Scholar 

  58. Massink, M., Latella, D., Bracciali, A., Hillston, J.: Modelling non-linear crowd dynamics in Bio-PEPA. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 96–110. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  59. Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstractions for hybrid systems. In: EMSOFT, pp. 1–10 (2013)

    Google Scholar 

  60. Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry, 6th edn. Palgrave Macmillan, Basingstoke (2013)

    Google Scholar 

  61. Norris, J.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  62. Okino, M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of chemical reaction systems. Chem. Rev. 2(98), 391–408 (1998)

    Article  Google Scholar 

  63. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  64. Pappas, G.J.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  65. Di Pierro, A., Hankin, C., Wiklicky, H.: Quantitative relations and approximate process equivalences. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 508–522. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  66. Rowe, J.E., Gomez, R.: El Botellon: modeling the movement of crowds in a city. Complex Syst. 14, 363–370 (2003)

    Google Scholar 

  67. Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 686–702. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  68. Sattenspiel, L., Herring, D.A.: Simulating the effect of quarantine on the spread of the 1918–19 flu in Central Canada. Bull. Math. Biol. 65(1), 1–26. http://dx.doi.org/10.1006/bulm.2002.0317

    Google Scholar 

  69. van der Schaft, A.J.: Equivalence of dynamical systems by bisimulation. IEEE Trans. Autom. Control 49(12), 2160–2172 (2004)

    Article  MathSciNet  Google Scholar 

  70. Sproston, J., Donatelli, S.: Backward bisimulation in Markov chain model checking. IEEE Trans. Softw. Eng. 32(8), 531–546 (2006)

    Article  Google Scholar 

  71. Suderman, R., Deeds, E.J.: Machines vs. ensembles: effective MAPK signaling through heterogeneous sets of protein complexes. PLoS Comput. Biol. 9(10), e1003278 (2013)

    Article  Google Scholar 

  72. Toth, J., Li, G., Rabitz, H., Tomlin, A.S.: The effect of lumping and expanding on kinetic differential equations. SIAM J. Appl. Math. 57(6), 1531–1556 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  73. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)

    Article  Google Scholar 

  74. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process algebra. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 380–394. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  75. Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogenous nonlinear models with differential hulls. IEEE Trans. Autom. Control. (2015, to appear)

    Google Scholar 

  76. Tschaikowski, M., Tribastone, M.: A unified framework for differential aggregations in Markovian process algebra. J. Log. Algebraic Methods Program. 84(2), 238–258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  77. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  78. Voit, E.O.: Biochemical systems theory: a review. ISRN Biomath. 1–53 (2013). http://dx.doi.org/10.1155/2013/897658897658

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the EU project QUANTICOL, 600708. The authors thank Luca Cardelli and Max Tschaikowski who co-authored the papers [1921] used as background material in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirco Tribastone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vandin, A., Tribastone, M. (2016). Quantitative Abstractions for Collective Adaptive Systems. In: Bernardo, M., De Nicola, R., Hillston, J. (eds) Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems. SFM 2016. Lecture Notes in Computer Science(), vol 9700. Springer, Cham. https://doi.org/10.1007/978-3-319-34096-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34096-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34095-1

  • Online ISBN: 978-3-319-34096-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics