Skip to main content

New Rough-Neuro-Fuzzy Approach for Regression Task in Incomplete Data

  • Conference paper
  • First Online:
Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery (BDAS 2015, BDAS 2016)

Abstract

A fuzzy rule base is a crucial part of neuro-fuzzy systems. Data items presented to a neuro-fuzzy system activate rules in a rule base. For incomplete data the firing strength of the rules cannot be calculated. Some neuro-fuzzy systems impute the missing firing strength. This approach has been successfully applied. Unfortunately in some cases the imputed firing strength values are very low for all rules and data items are poorly recognized by the system. That may deteriorate the quality and reliability of elaborated results.

The paper presents a new method for handling missing values in neuro-fuzzy systems in a regression task. The new approach introduces a new imputation technique (imputation with group centres) to avoid very low firing strength for incomplete data items. It outperforms previous method (elaborates lower error rates), avoids numerical problems with very low firing strengths in all fuzzy rules of the system. The proposed systems elaborated interval answer without Karnik-Mendel algorithm. The paper is accompanied by numerical examples and statistical verification on real life data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and control. Holden Day, Incorporated, Oakland (1970)

    MATH  Google Scholar 

  2. Cooke, M., Green, P., Josifovski, L., Vizinho, A.: Robust automatic speech recognition with missing and unreliable acoustic data. Speech Commun. 34, 267–285 (2001)

    Article  MATH  Google Scholar 

  3. Czogała, E., Łęski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Series in Fuzziness and Soft Computing. Physica-Verlag, Springer, Heidelberg, New York (2000)

    Book  MATH  Google Scholar 

  4. Gabriel, T.R., Berthold, M.R.: Missing values in fuzzy rule induction. In: SMC, pp. 1473–1476 (2005)

    Google Scholar 

  5. Grzymala-Busse, J.W.: A rough set approach to data with missing attribute values. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 58–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Himmelspach, L., Conrad, S.: Fuzzy clustering of incomplete data based on cluster dispersion. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 59–68. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132, 195–220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Korytkowski, M., Nowicki, R., Scherer, R., Rutkowski, L.: Ensemble of rough-neuro-fuzzy systems for classification with missing features. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008 (IEEE World Congress on Computational Intelligence), Hong Kong, pp. 1745–1750, June 2008

    Google Scholar 

  9. Mackey, M.C., Glass, L.: Oscillation and Chaos in physiological control systems. Science 197(4300), 287–289 (1977)

    Article  Google Scholar 

  10. Matyja, A., Simiński, K.: Comparison of algorithms for clustering incomplete data. Found. Comput. Decis. Sci. 39(2), 107–127 (2014)

    MATH  Google Scholar 

  11. Nowicki, R.: Rough-neuro-fuzzy system with MICOG defuzzification. In: 2006 IEEE International Conference on Fuzzy Systems, Vancouver, Canada, pp. 1958–1965 (2006)

    Google Scholar 

  12. Nowicki, R.: On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans. Knowl. Data Eng. 20(9), 1239–1253 (2008)

    Article  Google Scholar 

  13. Nowicki, R.K.: Rough-neuro-fuzzy structures for classification with missing data. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(6), 1334–1347 (2009)

    Article  Google Scholar 

  14. Nowicki, R.K.: On classification with missing data using rough-neuro-fuzzy systems. Int. J. Appl. Math. Comput. Sci. 20(1), 55–67 (2010)

    Article  MATH  Google Scholar 

  15. Nowicki, R.K., Korytkowski, M., Scherer, R., Nowak, B.A.: Design methodology for rough-neuro-fuzzy classification with missing data. In: 2015 IEEE Symposium Series on Computational Intelligence, pp. 1650–1657 (2015)

    Google Scholar 

  16. Renz, C., Rajapakse, J.C., Razvi, K., Liang, S.K.C.: Ovarian cancer classification with missing data. In: Proceedings of the 9th International Conference on Neural Information Processing, ICONIP 2002, vol. 2, pp. 809–813, Singapore (2002)

    Google Scholar 

  17. Sikora, M., Simiński, K.: Comparison of incomplete data handling techniques for neuro-fuzzy systems. Comput. Sci. 15(4), 441–458 (2014)

    Article  Google Scholar 

  18. Sikora, M., Krzystanek, Z., Bojko, B., Śpiechowicz, K.: Application of a hybrid method of machine learning for description and on-line estimation of methane hazard in mine workings. J. Min. Sci. 47(4), 493–505 (2011)

    Article  Google Scholar 

  19. Simiński, K.: Neuro-rough-fuzzy approach for regression modelling from missing data. Int. J. Appl. Math. Comput. Sci. 22(2), 461–476 (2012)

    MATH  Google Scholar 

  20. Simiński, K.: Clustering with missing values. Fundamenta Informaticae 123(3), 331–350 (2013)

    MATH  Google Scholar 

  21. Simiński, K.: Rough subspace neuro-fuzzy system. Fuzzy Sets Syst. 269, 30–46 (2015). http://www.sciencedirect.com/science/article/pii/S0165011414003108

    Article  MathSciNet  Google Scholar 

  22. Siminski, K.: Imputation of missing values by inversion of fuzzy neuro-system. In: Gruca, A., Brachman, S., Czachórski, T. (eds.) Man-Machine Interactions 4. AISC, pp. 573–582. Springer International Publishing, Heidelberg (2016)

    Chapter  Google Scholar 

  23. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)

    Article  Google Scholar 

  24. Zhang, S.: Shell-neighbor method and its application in missing data imputation. Appl. Intell. 35(1), 123–133 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Siminski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Siminski, K. (2016). New Rough-Neuro-Fuzzy Approach for Regression Task in Incomplete Data. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery. BDAS BDAS 2015 2016. Communications in Computer and Information Science, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-319-34099-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34099-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34098-2

  • Online ISBN: 978-3-319-34099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics