Abstract
Hand pose recognition from 2D still images is an important, yet very challenging problem of data analysis and pattern recognition. Among many approaches proposed, there have been some attempts to exploit manifold learning for recovering intrinsic hand pose features from the hand appearance. Although they were reported successful in solving particular problems related with recognizing a hand pose, there is a lack of a thorough study on how well these methods discover the intrinsic hand dimensionality. In this study, we introduce an evaluation framework to assess several state-of-the-art methods for manifold learning and we report the results obtained for a set of artificial images generated from a hand model. This will help in future deployments of manifold learning to hand pose estimation, but also to other multidimensional problems common to the big data scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
HGR dataset is available at http://sun.aei.polsl.pl/~mkawulok/gestures.
- 2.
Available at http://lvdmaaten.github.io/drtoolbox.
References
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)
Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Nat. Acad. Sci. 100(10), 5591–5596 (2003)
Freeman, W.T., Roth, M.: Orientation histograms for hand gesture recognition. In: Proceedings of the IEEE Conference on Automatic Face and Gesture Recognition, FG, pp. 296–301 (1995)
Ge, S.S., Yang, Y., Lee, T.H.: Hand gesture recognition and tracking based on distributed locally linear embedding. Image Vis. Comput. 26(12), 1607–1620 (2008)
Grzejszczak, T., Gałuszka, A., Niezabitowski, M., Radlak, K.: Comparison of hand feature points detection methods. In: Camarinha-Matos, L.M., Barrento, N.S., Mendonça, R. (eds.) DoCEIS 2014. IFIP AICT, vol. 423, pp. 167–174. Springer, Heidelberg (2014)
Hachaj, T., Ogiela, M.R.: Human actions recognition on multimedia hardware using angle-based and coordinate-based features and multivariate continuous hidden markov model classifier. Multimedia Tools and Applications, pp. 1–21 (in press)
Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE TPAMI 15(9), 850–863 (1993)
Kasprowski, P.: Mining of eye movement data to discover people intentions. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 355–363. Springer, Heidelberg (2014)
Kawulok, M., Kawulok, J., Nalepa, J., Papiez, M.: Skin detection using spatial analysis with adaptive seed. In: Proceedings of the IEEE International Conference on Image Processing, ICIP 2013, pp. 3720–3724, September 2013
Kawulok, M., Kawulok, J., Nalepa, J., Smolka, B.: Self-adaptive algorithm for segmenting skin regions. EURASIP J. Adv. Sig. Process. 2014(170), 1–22 (2014)
Kawulok, M., Smolka, B.: Competitive image colorization. In: Proceedings of the IEEE International Conference on Image Processing, ICIP 2010, pp. 405–408 (2010)
Kawulok, M., Wu, J., Hancock, E.R.: Supervised relevance maps for increasing the distinctiveness of facial images. Pattern Recogn. 44(4), 929–939 (2011)
Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction of data manifolds with essential loops. Neurocomputing 67, 29–53 (2005)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2579–2605), 85 (2008)
van der Maaten, L., Postma, E.O., Herik, H.J.: Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(1–41), 66–71 (2009)
Milligan, G.W., Cooper, M.C.: A study of the comparability of external criteria for hierarchical cluster analysis. Multivar. Behav. Res. 21(4), 441–458 (1986)
Nalepa, J., Grzejszczak, T., Kawulok, M.: Wrist localization in color images for hand gesture recognition. In: Gruca, A., Czachórski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 81–90. Springer, Heidelberg (2014)
Nalepa, J., Kawulok, M.: Fast and accurate hand shape classification. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 364–373. Springer, Heidelberg (2014)
Nalepa, J., Kawulok, M.: Adaptive memetic algorithm enhanced with data geometry analysis to select training data for SVMs. Neurocomputing 185, 113–132 (2016). http://dx.doi.org/10.1016/j.neucom.2015.12.046
Nurzynska, K., Smolka, B.: PCA application in classification of smiling and neutral facial displays. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015. CCIS, vol. 521, pp. 398–407. Springer, Heidelberg (2015)
Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3D tracking of hand articulations using Kinect. In: BMVC, vol. 1(2), p. 3 (2011)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. Vis. Commun. Image Represent. 25(5), 1056–1063 (2014)
Szwoch, M.: On facial expressions and emotions RGB-D database. In: Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 384–394. Springer, Heidelberg (2014)
Tenenbaum, J.B., Silva, Vd, Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Šarić, M.: Libhand: A library for hand articulation, version 0.9 (2011)
Wang, Y., Luo, Z., Liu, J., Fan, X., Li, H., Wu, Y.: Real-time estimation of hand gestures based on manifold learning from monocular videos. Multimedia Tools Appl. 71(2), 555–574 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Papiez, M., Kawulok, M., Nalepa, J. (2016). Manifold Learning for Hand Pose Recognition: Evaluation Framework. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery. BDAS BDAS 2015 2016. Communications in Computer and Information Science, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-319-34099-9_55
Download citation
DOI: https://doi.org/10.1007/978-3-319-34099-9_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-34098-2
Online ISBN: 978-3-319-34099-9
eBook Packages: Computer ScienceComputer Science (R0)