Skip to main content

A Meta-Learning Approach to Methane Concentration Value Prediction

  • Conference paper
  • First Online:
Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery (BDAS 2015, BDAS 2016)

Abstract

A meta-learning approach to stream data analysis is presented in this work. The analysis is based on prediction of methane concentration in a coal mine. The results of the analysis show that the chosen approach achieves relatively low error values. Additionally, the impact of a data window size on a learning speed and quality was verified. The analysis is performed on a stream of measurements that was generated on a basis of real values collected in a coal mine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://www.openml.org.

References

  1. Alberg, D., Last, M., Kandel, A.: Knowledge discovery in data streams with regression tree methods. Wiley Interdisc. Rev.: Data Min. Knowl. Disc. 2(1), 69–78 (2012)

    Google Scholar 

  2. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)

    Google Scholar 

  3. Gaber, M., Zaslavsky, A., Krishnaswamy, S.: A survey of classification methods in data streams. In: Aggarwal, C. (ed.) Data Streams. Advances in Database Systems, vol. 31, pp. 39–59. Springer, US (2007). http://dx.doi.org/10.1007/978-0-387-47534-9_3

    Chapter  Google Scholar 

  4. Ikonomovska, E., Gama, J., DĆŸeroski, S.: Learning model trees from evolving data streams. Data Min. Knowl. Disc. 23(1), 128–168 (2011). http://dx.doi.org/10.1007/s10618-010-0201-y

    Article  MathSciNet  MATH  Google Scholar 

  5. Jankowski, N., Grąbczewski, K.: Universal meta-learning architecture and algorithms. In: Jankowski, N., Duch, W., Grbczewski, K. (eds.) Meta-Learning in Computational Intelligence. Studies in Computational Intelligence, vol. 358, pp. 1–76. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-20980-2_1

    Chapter  Google Scholar 

  6. Janusz, A., Sikora, M., Wróbel, U., Stawicki, Ɓ., Grzegorowski, M., Wojtas, P., ƚlezak, D.: Mining data from coal mines: IJCRS’15 data challenge. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds.) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. LNCS, vol. 9437, pp. 429–438. Springer International Publishing, Heidelberg (2015)

    Chapter  Google Scholar 

  7. Kabiesz, J.: Effect of the form of data on the quality of mine tremors hazard forecasting using neural networks. Geotech. Geol. Eng. 24(5), 1131–1147 (2006). http://dx.doi.org/10.1007/s10706-005-1136-8

    Article  Google Scholar 

  8. Kabiesz, J., Sikora, B., Sikora, M., Wróbel, Ɓ.: Application of rule-based models for seismic hazard prediction in coal mines. Acta Montanist. Slovaca 18(4), 262–277 (2013)

    Google Scholar 

  9. Keet, C.M., Ɓawrynowicz, A., dAmato, C., Kalousis, A., Nguyen, P., Palma, R., Stevens, R., Hilario, M.: The data mining optimization ontology. Web Semant.: Sci. Serv. Agents World Wide Web 32, 43–53 (2015). http://www.sciencedirect.com/science/article/pii/S1570826815000025

    Article  Google Scholar 

  10. Kozielski, M., Sikora, M., Wróbel, L.: DISESOR - decision support system for mining industry. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 67–74, September 2015

    Google Scholar 

  11. Kozielski, M., Skowron, A., Wróbel, Ɓ., Sikora, M.: Regression rule learning for methane forecasting in coal mines. In: Kozielski, S., Mrozek, D., Kasprowski, P., MaƂysiak-Mrozek, B., Kostrzewa, D. (eds.) Beyond Databases, Architectures and Structures. Communications in Computer and Information Science, vol. 521, pp. 495–504. Springer, Heidelberg (2015)

    Google Scholar 

  12. Ɓawrynowicz, A., Potoniec, J.: Pattern based feature construction in semantic data mining. Int. J. Semant. Web Inf. Syst. (IJSWIS) 10(1), 27–65 (2014)

    Article  Google Scholar 

  13. Lemaire, V., Salperwyck, C., Bondu, A.: A survey on supervised classification on data streams. In: Zimányi, E., Kutsche, R.-D. (eds.) Business Intelligence. Lecture Notes in Business Information Processing, vol. 205, pp. 88–125. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-319-17551-5_4

    Google Scholar 

  14. Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technologies. Artif. Intell. Rev. 44(1), 117–130 (2015). http://dx.doi.org/10.1007/s10462-013-9406-y

    Article  Google Scholar 

  15. Leƛniak, A., Isakow, Z.: Space-time clustering of seismic events and hazard assessment in the Zabrze-Bielszowice coal mine, Poland. Int. J. Rock Mech. Min. Sci. 46(5), 918–928 (2009). http://dx.doi.org/10.1016/j.ijrmms.2008.12.003

    Article  Google Scholar 

  16. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: Algorithm Selection on Data Streams. In: DĆŸeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) Discovery Science. LNCS, vol. 8777, pp. 325–336. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-11812-3_28

    Google Scholar 

  17. Schaffer, C.: A conservation law for generalization performance. In: Proceedings of the 11th International Conference on Machine Learning, pp. 259–265 (1994)

    Google Scholar 

  18. Serban, F., Vanschoren, J., Kietz, J.U., Bernstein, A.: A survey of intelligent assistants for data analysis. ACM Comput. Surv. 45(3), 31:1–31:35 (2013). http://doi.acm.org/10.1145/2480741.2480748

    Article  Google Scholar 

  19. Sikora, M., Sikora, B.: Improving prediction models applied in systems monitoring natural hazards and machinery. Int. J. Appl. Math. Comput. Sci. 22(2), 477–491 (2012). http://dx.doi.org/10.2478/v10006-012-0036-3

    Article  MATH  Google Scholar 

  20. Sikora, M., Sikora, B.: Rough natural hazards monitoring. In: Peters, G., Lingras, P., ƚlęzak, D., Yao, Y. (eds.) Rough Sets: Selected Methods and Applications in Management and Engineering. Advanced Information and Knowledge Processing, pp. 163–179. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-1-4471-2760-4-10

    Chapter  Google Scholar 

  21. SimiƄski, K.: Rough subspace neuro-fuzzy system. Fuzzy Sets Syst. 269, 30–46 (2015)

    Article  MathSciNet  Google Scholar 

  22. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009). http://doi.acm.org/10.1145/1456650.1456656

    Google Scholar 

  23. Vanschoren, J.: Understanding machine learning performance with experiment databases. Ph.D. dissertation, Katholieke Universiteit Leuven, Flanders, Belgium (2010)

    Google Scholar 

  24. Vilalta, R., Giraud-Carrier, C., Brazdil, P.: Meta-learning - concepts and techniques. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 717–731. Springer, US (2010). http://dx.doi.org/10.1007/978-0-387-09823-4_36

    Google Scholar 

  25. Zagorecki, A.: Prediction of methane outbreaks in coal mines from multivariate time series using random forest. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds.) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. LNCS, pp. 494–500. Springer International Publishing, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-319-25783-9_44

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by the Polish National Centre for Research and Development (NCBiR) grant PBS2/B9/20/2013 in the frame of the Applied Research Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MichaƂ Kozielski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kozielski, M. (2016). A Meta-Learning Approach to Methane Concentration Value Prediction. In: Kozielski, S., Mrozek, D., Kasprowski, P., MaƂysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery. BDAS BDAS 2015 2016. Communications in Computer and Information Science, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-319-34099-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34099-9_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34098-2

  • Online ISBN: 978-3-319-34099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics