
HAL Id: hal-01374665
https://hal.sorbonne-universite.fr/hal-01374665

Submitted on 30 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metamodel and Constraints Co-evolution: A Semi
Automatic Maintenance of OCL Constraints

Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin,
Marie-Pierre Gervais

To cite this version:
Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin, Marie-Pierre Gervais. Meta-
model and Constraints Co-evolution: A Semi Automatic Maintenance of OCL Constraints. ICSR
2016 - 15th International Conference on Software Reuse, Jun 2016, Limassol, Cyprus. pp.333-349,
�10.1007/978-3-319-35122-3_22�. �hal-01374665�

https://hal.sorbonne-universite.fr/hal-01374665
https://hal.archives-ouvertes.fr


Metamodel and Constraints Co-evolution: A Semi

Automatic Maintenance of OCL Constraints

Djamel Eddine Khelladi1, Regina Hebig2, Reda Bendraou1, Jacques Robin1,
Marie-Pierre Gervais1

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, F-75005, Paris, France.
2 Chalmers and University of Technology Gothenburg, Sweden

{firstname.lastname}@lip6.fr, hebig@chalmers.se

Abstract. Metamodels are core components of modeling languages to
de�ne structural aspects of a business domain. As a complement, OCL
constraints are used to specify detailed aspects of the business domain,
e.g. more than 750 constraints come with the UML metamodel. As the
metamodel evolves, its OCL constraints may need to be co-evolved too.
Our systematic analysis shows that semantically di�erent resolutions can
be applied depending not only on the metamodel changes, but also on
the user intent and on the structure of the impacted constraints. In this
paper, we investigate the reasons that lead to apply di�erent resolutions.
We then propose a co-evolution approach that o�ers alternative reso-
lutions while allowing the user to choose the best applicable one. We
evaluated our approach on the evolution of the UML case study. The
results con�rm the need of alternative resolutions along with user deci-
sion to cope with real co-evolution scenarios. The results show that our
approach reaches 80% of semantically correct co-evolution.

1 Introduction

In Model-Driven Engineering, metamodels are core components of a modeling
language ecosystem [10]. They de�ne the structural aspects of a business domain,
i.e. the main concepts, their properties, and the relationships between them [4].
However, a metamodel alone is insu�cient to capture all the relevant aspects
and information of a domain speci�cation [18]. To overcome this limitation, the
Object Constraint Language (OCL) [21] is used to de�ne constraints on top
of the metamodel. For instance, the wide-spread Uni�ed Modeling Language
(UML) [23] in version 2.4.1 contains more than 750 OCL constraints expressing
well-formedness rules to be enforced at the model instances level.

A challenge hereby arises when the metamodel is evolved causing the inval-
idation of some OCL constraints that need to be co-evolved (i.e. maintained to
remain reusable [19]). For instance, the UML metamodel o�cially evolved 10
times in the past that led to manually adapting the OCL constraints.

Manual co-evolution is a tedious, time-consuming, and error-prone task, in
particular when hundreds of OCL constraints exist. In such a context, it is crucial
to support an automatic co-evolution.
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Problem Statement. Automatically co-evolving OCL constraints remains
challenging, mainly because of two issues: 1) the existence of multiple and se-
mantically di�erent resolutions, and 2) a resolution can be applicable only to a
subset of OCL constraints. In the following we detail these issues.

1) The impact of a metamodel change on an OCL constraint can be resolv-
able using resolutions that are syntactically and/or semantically di�erent. For
instance, the metamodel change "multiplicity generalization of a property p from
a single value to multiple values" requires the OCL constraints to work on a col-
lection of values, e.g. by introducing an iterator. Figure 1 gives an example of
this change for the property ref with a simple OCL constraint.

Fig. 1: Existence of multiple solutions

Multiple resolutions can be
applied here as depicted in Fig-
ure 1, since multiple iterators with
di�erent semantics exist, e.g.
forAll(), exists() etc. Proposing a
unique resolution reduces the ap-
plicability of the co-evolution ap-
proach and limits its bene�t. Fi-
nal decision can only be speci�ed by the user herself, to avoid unintended co-
evolution changes.

2) A given resolution strategy is not always applicable for all OCL constraints.
The complex nature of OCL requires di�erent resolution strategies, each one
applicable for only a subset of OCL constraints based on: a) the location of
the impacted part in an OCL constraint, and b) its context (i.e. the metamodel
element on which an OCL constraint is de�ned). Figure 2 illustrates this issue.
It depicts an evolution of a metamodel where the property depth is deleted from
the superclass Component and added to the subclass Composite, which �ts the
de�nition of a "push property" [9]. The �rst two constraints become invalid
because depth is no more accessible in Component. The �rst constraint that uses
the pushed property depth through the reference component, can be co-evolved
by introducing an If expression that �rst checks whether component references
an instance of the subclass Composite so that depth is accessible. In contrast,
the second OCL constraint whose context is de�ned on the pushed property
depth, is co-evolved di�erently by duplicating it for the subclass Composite. The
original constraint is then removed as depicted in Figure 2d. Note that the third
constraint de�ned on the context of the subclass Composite that uses depth is
not impacted. Clearly, a unique resolution strategy cannot be applied whatever
the OCL constraint, for the three constraints in our example.

Consequently, it is crucial to consider the two above issues when co-evolving
OCL constraints. However, existing approaches [7, 5, 6, 16, 17, 13] propose a
unique resolution per metamodel change. They neither consider the two above
issues, nor interact with the user.

Contributions. We thus addressed these challenges by four contributions:

� First, we systematically investigated what are the in�uencing factors that
lead to de�ne alternative resolution strategies and when to apply them. Thus,
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(a) Original metamodel. (b) Evolved metamodel.

(c) Original OCL. (d) Evolved OCL.

Fig. 2: An evolution example of a composite pattern.

we established that the metamodel changes alone are insu�cient to propose
the appropriate resolutions, and additional factors must be considered.

� Second, we propose an approach that considers multiple resolutions per im-
pacted part of an OCL constraint based on the in�uencing factors. Thus, for
a metamodel change, we propose various resolutions for di�erent subsets of
OCL constraints. It allows us to cover di�erent alternatives of co-evolution.

� Third, we o�er the user the option to choose the appropriate resolutions to
be applied during co-evolution among the ones we propose. The user can also
decide to not apply a resolution if it does not suit her needs. Involving the
user greatly contributes to avoid applying unintended resolution strategies.

� Fourth, we evaluate our approach by comparing a set of manually co-evolved
OCL constraints in practice against the same co-evolved ones with our tool.
The evaluation con�rms that alternative resolutions along with users �nal
decision are required in practice for a correct co-evolution. The results on the
UML Class Diagram case study show that our approach can handle a real
case study, reaching 80% of semantically correct OCL co-evolution.

For a better understanding of the current approach, this paper �rst discusses
the factors that in�uence the application of the resolution strategies in Section
2. Section 3 then presents the overall approach introduces some of the proposed
resolutions. Section 4 illustrates our implementation. The evaluation, results,
discussion, and threats to validity are presented in Section 5. Finally, Section 6
and 7 present respectively the related work and the conclusion.

2 Factors In�uencing the Resolution Strategies

In this section, we identify the factors that in�uence the choice of the resolution
strategies. To illustrate the in�uencing factors we reuse the example of Figure 2.
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Factor 1. First of all, the metamodel change is fundamental to choose which
resolution to apply, similarly as in model co-evolution (e.g. [15, 25]). The impacts
of a rename property and a push property cannot be �xed using the same reso-
lution. Thus, the �rst in�uencing factor is: the metamodel change.

Factor 2.We further investigated which locations in an OCL constraint can
in�uence the choice of a resolution. We identi�ed two locations that have an
in�uence: navigation path and context. For example, in Figure 2 the two �rst
OCL constraints need to be resolved di�erently since the pushed property depth
is used in di�erent locations. In the �rst constraint depth is located in the OCL
expression (i.e. body) through a navigation path. Whereas, in the second con-
straint depth is located in the context. Thus, the second in�uencing factor is: the
location of the impacted metamodel element e in an OCL constraint.

Factor 3. Finally, we found a third factor that is the context of the constraint,
which can in�uence the choice of a resolution. In Figure 2, the �rst constraint is
co-evolved by introducing an If expression and not by duplicating the constraint
to the subclasses where depth is pushed, as we did with the second constraint.
This is due to the fact that the context of the �rst constraint is not the superclass
Component. When changing the context, all accessible properties from the old
context must remain accessible from the new context. If the context of the �rst
constraint is changed from Element to Composite, the property limit will not be
accessed anymore. For the third constraint which has the sub class Composite as
context no resolution strategy is applied, since depth is still accessible. Therefore,
the third in�uencing factor is: the context of the impacted constraint.

Our analysis of the state-of-the-art led us to identify the factor 1, only. To
identify the additional factors 2 and 3, we systematically studied the di�erent
uses of the metamodel elements in the OCL language and we analyzed why a
resolution can be applied to some constraints and not to others.

3 A Co-Evolution Approach of OCL Constraints

Fig. 3: Overall Approach.

This section presents our ap-
proach to co-evolve OCL con-
straints. Figure 3 depicts an
overview of our approach.
We �rst present the meta-
model changes that we con-
sider during an evolution and
we present how they are iden-
ti�ed 1 . After that, we dis-
cuss the identi�cation of im-
pacted OCL constraints, in
particular the localization of
the impacted parts in the con-
straints 2 . Then, we explain
how we obtain the three in�uencing factors for each impacted OCL constraint.
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Finally, we show how alternative resolutions are proposed to the user 3 and

how they are automatically applied 4 .

3.1 Metamodel Changes During Evolution

During a metamodel evolution two types of changes are distinguished: a) Atomic
changes that are additions, removals, and updates of a metamodel element, and
b) Complex changes that consist in a sequence of atomic changes combined
together. For example, move property is a complex change where a property is
moved from one class to another via a reference. This is composed of two atomic
changes: delete property and add property [9].

We consider the following set of atomic changes: add, delete, and update of
metamodel elements. An update, changes the value of a property of an element,
such as 'type', 'name', 'upper/lower bounds'. The metametamodel elements that
are considered in this work are: package, class, attribute, reference, operation,
parameter, and generalization. Those elements represent the core features of a
metamodel in the EMF/Ecore [24] and the MOF [20] standards. In the literature,
over sixty complex changes are proposed [9]. Among them, we focus on seven
complex changes:move property, pull property, push property, extract super class,
�atten hierarchy, extract class, and inline class. A study of the evolution of
GMF 3 metamodel showed that these seven changes are the most used ones and
constitute 72% of the applied complex changes [8, 14]. In our case study they
constitute 100% of the applied complex changes in the evolutions.

In our co-evolution approach we must �rst identify metamodel changes that
led from version n to version n+1, as shown by the step 1 in Figure 3. This
is a prerequisite for both impact analysis and automatic support of the co-
evolution. We reuse our detection tool [12, 11], an extension of the Praxis tool
[1]. It �rst records at run-time all atomic changes applied by users within a
modeling tool. The sequence of recorded atomic changes then serves as input
for the detection of complex changes. Our tool [12, 11] has been designed to
detect all applied changes. This is con�rmed in the evaluation results by always
reaching a 100% recall (i.e. all complex changes are detected) and a precision
(i.e. correct detection) of 91% and 100%. Our tool [12, 11] allows the user to
con�rm the list of complex changes that best re�ect her intention during the
evolution. Therefore, a �nal precise, complete, and ordered trace of both atomic
and complex changes is computed. This trace is taken as input by our herein
tool to co-evolve the OCL constraints.

3.2 Identi�cation of Impacted OCL Constraints

The second step of our approach is to identify the OCL constraints impacted
by metamodel changes during the evolution. In particular, we identify all the
impacted parts of the OCL constraints that need to be co-evolved.

To run the impact analysis we need to access all the elements used in an
OCL constraint. Thus, we �rst parse the OCL constraints to use the Abstract

3Graphical Modeling Framework http://www.eclipse.org/modeling/gmf.
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Table 1: Impact Identi�cation on OCL constraints.

Metamodel Elements OCL Constraints References To AST Nodes

e1 OCL1, ... ref1, ref2, ...

... ... ...

Syntax Tree (AST) representing a structured view of an OCL constraint. The
identi�cation of impacted OCL constraint is then performed on the generated
AST. Before identifying where an AST is impacted, we �rst compute a table that
lists for each metamodel element e, all OCL constraints using e with references
to the AST nodes using e. Those references will be further used in the resolution
step. Table 1 illustrates an example of our computed table. To build Table 1, we
use pre-order tree traversal algorithm through the AST while �lling the table.

For each metamodel change on a metamodel element ei, we access the set
of impacted OCL constraints and we access exactly the impacted AST nodes
with the saved references. Note that a metamodel complex change can involve
several elements ei...ej . Thus, the set of impacted OCL constraints are accessed
naturally for each element ek where i ≤ k ≤ j. During the co-evolution process
Table 1 is also updated accordingly with the applied resolutions. For instance,
when a rename element e occurs, it is also renamed in the table.

3.3 Obtaining the In�uencing Factors

As discussed in section 3.1 the metamodel changes are given as input from our
detection [12, 11]. The two last factors, i.e. location and context, are obtained
from the impacted AST and AST nodes from Table 1. Each AST node has a
type and information that we can use to determine the impacted location in the
constraints as well as the context of a constraint. For the context, we further
identify whether the impacted element is accessed from the level of its container,
the sub classes, or the super class. At this point, once the three in�uencing factors
for an impacted part of an OCL constraint are determined, we can propose a set
of possible resolutions, as we will describe it in Section 3.5.

3.4 Resolution Strategies

In this section we present our resolutions and the in�uencing factors under which
they are applied. As an example, we present the resolution strategies associated
with the metamodel change "generalize property multiplicity (GPM) from a sin-
gle value to multiple values" that is applied in Figure 1.

This metamodel change requires the OCL constraint to work on a collection
of values of a property p and not a single value anymore. Multiple solutions can
be proposed all with a slightly di�erent semantic.

Id : #S3. Context : n/a.
Location in the constraint : navigation path.
Description : An iterator "forAll" is added to access the property p, and

the subexpression using the values of p is moved to the body of the "forAll"
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Table 2: Resolutions proposed in our co-evolution approach.

Metamodel change
(Factor 1)

Location in the
OCL constraint
(Factor 2)

Context
(Factor 3)

Resolution
strategies

Total No of
proposed
resolutions

� Rename element n/a n/a #S1 1
� Delete element n/a n/a #S2 1
� GPM from a single
value to multiple values

navigation path n/a
#S3 #S4 #S5
#S6 #S7

5

� Move property
context container #S8

3
navigation path n/a #S9 #S10

� Push property
context container #S11

3navigation path container #S12

navigation path
not via the
subclasses

#S13

� Extract class context container #S8
2

navigation path n/a #S9

� Inline class context container #S14
3

navigation path n/a #S15 #S16
� Flatten hierarchy n/a container #S17 1

while replacing the access path with a temporary variable. The given semantic
here is that the OCL constraint is satis�ed if it is satis�ed for all the values of p.

Exp.p.restExp => Exp.p−>forAll(x|x.restExp)
Id : #S4. Context : n/a.
Location in the constraint : navigation path.
Description : An iterator "exists" is added to access the property p, and

the subexpression using the values of p is moved to the body of the "exists"
while replacing the access path with a temporary variable. The given semantic
is that the OCL constraint is satis�ed if at least it is satis�ed for one value of p.

Exp.p.restExp => Exp.p−>exists(x|x.restExp)
Table 2 presents the metamodel changes that have an impact on OCL con-

straint which can be automatically resolved, and their associated resolutions
while specifying the two new in�uencing factors. As shown in Table 2, for 8
metamodel changes we propose 17 resolutions. Note that we do not attempt to
de�ne all possible resolutions. Indeed, there will always be a situation in which
the user might apply a manual resolution or a particular refactoring. This is
handled in our approach by the ignore option since we allow the user to not
apply a speci�c resolution when desired. Description and examples of all our
resolutions can be found in our companion web page 4.

3.5 Proposing Resolution Strategies

In our approach we de�ne and we implement a set of �xed resolutions that can
be applied during co-evolution. When de�ning the resolutions we already specify
under which in�uencing factors each resolution is applied (see section 3.4).

Figure 4 depicts our process of selecting the appropriate resolutions. It starts
with all implemented resolutions and excludes a subset of resolutions based on

4https://pages.lip6.fr/Djamel.Khelladi/ICSR2016/
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Fig. 4: Process of selecting the appropriate resolution strategies per impacted
part of a constraint and per metamodel change.

the in�uencing factors. The �nal subset of applicable resolutions is then proposed
to the user. The �rst factor we consider to exclude resolutions is the metamodel
change that reduces the possible applicable resolutions (step 1). If we encounter a
rename change we exclude the resolutions de�ned for other metamodel changes.
After that, the impacted location is considered to also reduce the subset of the
possible applicable resolutions (step 2). Finally, the context of the impacted
constraint allows us to further reduce the resolutions to a �nal subset (step 3)
that is proposed to the user who decides which one to apply.

A constraint can be impacted in di�erent parts, i.e. di�erent AST nodes,
by either the same or di�erent metamodel changes. The process of Figure 4
is applied for each impacted part of an OCL constraint, i.e. for each tuple of
{impacted OCL constraint × impacted AST node}. Note that when a constraint
is impacted by several metamodel changes, the resolutions are proposed and
applied following the chronological order of the changes in the evolution trace.
It ensures consistency in the co-evolution since the resolutions are applied in
the order of their associated metamodel changes. To remain �exible and to not
introduce unintended solutions, our approach also proposes the possibility to
ignore (in Figure 4) the proposed resolutions.

3.6 Automated Application of the Constraints' Resolutions

At this stage, we can propose, for each impacted part of an OCL constraint, a
set of resolution strategies among which the user can choose.

A resolution updates the AST by adding, removing, or updating nodes. Each
resolution is implemented as a transformation function applied on the ASTs.
Figure 5 depicts the co-evolution of the �rst constraint in Figure 2c to the �rst
constraint in Figure 2d at the AST level. The identi�ed impacted AST node
by the push property depth is represented with an arrow labeled "impacts" in
Figure 5. Note that some resolutions can be applied directly on the impacted
AST node such as for a rename. Other resolutions can be applied on a subtree
composing the OCL subexpression that includes the impacted AST node. The
resolution for the pushed property depth cannot be applied on the AST node
AttributeCallExp of depth alone. To this end, the �rst OCL subexpression
in the AST is identi�ed on which the resolution strategy is applied locally. In
Figure 5, the subtree on which the resolution #S13 applies is surrounded by the
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Fig. 5: AST of the original and co-evolved OCL constraint

dashed square. The resolution is represented by the gray nodes, and it consists
in introducing an If expression that tests whether the current instance of the
container is of type Composite. The Then branch contains the found subtree
while introducing a conversion to Composite before to call the property depth.

4 Implementation

Our tool manipulates Ecore/EMF metamodels and OCL �les for the constraints.
After identifying the metamodel evolution trace with the detection tool [12, 11].
Our tool runs the impact analysis on the OCL constraints and for each impacted
part we propose alternative resolutions. The user can then choose the appropriate
resolution among the proposed ones or can decide to apply none of them. Then,
our co-evolution engine applies the chosen resolution for each impacted part of an
OCL constraint at the AST level. The core functionalities of this component are
implemented with Java and are packaged into an Eclipse plugin that is chained
with the external plugins of Blanc et al. [1] and [12, 11].

Figure 6 displays a screenshot of our tool. Window (1) shows the OCL con-
straints that are co-evolved. In window (2) we present the impacted constraints
and the cause of the impact in a textual message (the metamodel change and the
location of the used element). In Window (3) a set of resolutions is proposed in a
dropdown menu to the user along with the ignore option. Then, each resolution
is applied to each impacted part of an OCL constraint.

5 Evaluation

This section presents a qualitative evaluation of our approach by comparing for
the same set of constraints how they are manually co-evolved in practice against
how they are co-evolved by our tool. This allows us to measure the precision of
our approach. We �rst present our dataset. Then, we present the co-evolution
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Fig. 6: Screenshot of the Eclipse plugin Tool.

as it occurred in practice. After that, the co-evolution results of our approach
are illustrated. Finally, we compare our results against the ones in practice.
Time performances of the co-evolution are measured as well. The goals of this
evaluation are the following:

#G1: Demonstrate that alternative resolutions are required in practice.
#G2: Show that our 17 resolutions are close to the user's needs.
#G3: Show that the set of initial metamodel changes we support already

allows handling a realistic co-evolution scenario.

5.1 Dataset

We evaluate on a real evolution case study, namely: the UML Class Diagram
(CD) metamodel from version 1.5 to 2.0 with their respective 73 and 110 OCL
constraints. We collected the OCL constraints that are associated to the meta-
model's versions 1.5 and 2.0. We put the constraints into a canonical form, e.g.
by adding the keyword "self" to remove any ambiguity.

5.2 Co-Evolution Results as Occurred in Practice

As a �rst step of our evaluation, we studied how the OCL constraints are co-
evolved in practice in response to the metamodel evolution. To this end, we �rst
studied the evolution of the UML CD from 1.5 to 2.0 to determine the atomic
and complex changes. In order to study how the OCL constraints are co-evolved
in practice, we followed the next procedure:
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Table 3: Co-Evolution of the OCL constraints as they occurred in practice.

Co-evolution of OCL constraints in practice UML CD 1.5 to 2.0

� Constraints that are not impacted 19
xx� Constraints not impacted and present in both versions 7
xx� Constraints not impacted and deleted in the new version 12
� Constraints impacted in the �rst version (to be co-evolved) 54
xx� Constraints co-evolved by deletion in the new version 35
xx� Constraints co-evolved and present in the new version 19
� New constraints in the new version 84

� Identify non-impacted constraints in the original version that are present in
the new version.

� Identify non-impacted constraints in the original version that are deleted in
the new version.

� Identify impacted constraints in the original version that should be co-
evolved.

� For these impacted constraints, we systematically verify in the new version
whether it exists a constraint that:
• Has the same objective. We judge based on the comments describing the
constraint's purpose (given in the speci�cation). We also check returned
type equality.
• Has the same structure, using similar OCL operators, and/or using the
same metamodel elements.
• Final decision is made manually:
1. If no constraint is found, we consider the impacted constraint as deleted.
2. If a constraint is found, we consider it to be the co-evolved version of

the impacted constraint.
� Identify new constraints added in the evolved version.

Our analysis' results of the co-evolution in practice are presented in Table 3.

5.3 Co-Evolution Results by our Approach

We �rst detected with our tool [12, 11] the evolution traces of the UML CD
metamodel that is given as input to our co-evolution tool. In the experiment,
the authors play the user role. We aimed at co-evolving the OCL constraints as
close as possible to the co-evolution in practice while also avoiding the use of the
ignore solution (for an objective comparison in the next section). The results of
our applied co-evolution are presented in Table 4.

Several constraints are impacted by more than one metamodel change. Thus,
more than one resolution is applied for several constraints. For instance, rename
#S1 (see Table 2) is several times applied along with #S2, #S3, #S9 #S12,
or #S13 on the same constraint. As mentioned previously, the resolutions are
applied following the chronological order of the detected metamodel changes.

Performances. We ran our experiment on a PC VAIO with i7 1.80 GHz
Processor and 8GB of RAM with Windows 7 as OS. After selecting the reso-
lutions to be applied among the proposed ones, all impacted OCL constraints
were co-evolved in less than 1 second in each of the case studies.
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Table 4: Co-evolution of OCL constraints by our approach

Co-evolution of OCL constraints by our approach UML CD 1.5 to 2.0

� Constraints that are not impacted 19
� Constraints impacted in the �rst version (to be co-evolved) 54
xx� Constraints co-evolved by deletion 28
xx� Constraints co-evolved by other resolution strategies 26

5.4 Comparison of the Results: "our Approach" VS "in Practice"

Following our procedure of section 3.2 we were able to identify all the 54 impacted
constraints.

Deleted constraints. Among those 54 constraints, 28 constraints are co-
evolved by deletion. This is due to the fact that some properties and/or classes
used in those 28 constraints are deleted during the metamodel evolution. Those
28 deleted constraints are also deleted in the real case study, i.e. they are included
in the 35 deleted constraints in practice.

Undeleted constraints. In our approach we co-evolved 26 constraints with
various resolutions. Among those 26 constraints, 19 constraints are co-evolved
in our approach that correspond to the 19 co-evolved constraints in practice.
Moreover, 7 constraints are co-evolved in our approach and correspond to the 7
impacted constraints that are deleted in practice.

Regarding the 19 constraints that are co-evolved with our tool, 11 co-evolved
constraints are syntactically equal to 11 of the the 19 constraints that resulted
from the co-evolution in practice. Additional 4 constraints are not syntactically
but are semantically equal to 4 of the 19 constraints that are co-evolved in
practice, making 15 semantically correct co-evolved constraints with our tool.

However, the last 4 constraints are non-syntactically and non-semantically
matching. They are refactored in practice with a di�erent semantic. For example,
one original constraint that checks absence of circular inheritance is impacted by
the renaming of GeneralizableElement to PackageableElement. It is co-evolved by
our approach as follows from (1) to (2) by applying the rename strategy #S1.

context GeneralizableElement inv: �� (1)
not self.allParents()−> includes(self)

context PackageableElement inv: �� � (2)
not self.allParents()−> includes(self)

In practice the context of constraint (1) was changed to the subclass
Classifier instead of or after applying the rename. Thus, the semantic is slightly
changed by the manual co-evolution since the applicability scope of the new con-
straint is reduced to elements of type Classifier.

The rates of syntactically and semantically correct co-evolution are respec-
tively 72% and 80% 5.

Maintained constraints. In our approach, 7 impacted constraints are co-
evolved whereas they are deleted in practice A . We applied 8 times the rename
strategy #S1 for six of the constraints and 1 time the strategy #S16 of an inline

5% = ((deleted constraints + syntactically (respectively semantically) correct co-
evolved constraints) / impacted constraints)



Metamodel and OCL Constraints Co-evolution. 13

class for one constraint. Thus, only 35% (19/54) of the impacted constraints
are maintained in practice, while 48% (26/54) of the impacted constraints are
maintained in our approach. For example, constraint (3) is an operation de�ned
on a ModelElement returning a set of all direct suppliers of the ModelElement;
it is impacted by the rename of ModelElement to NamedElement. We co-evolved
it to (4) simply by applying the rename strategy #S1.

context ModelElement def: supplier : �� (3)
Set(ModelElement) = self.clientDependency.supplier

context NamedElement def: supplier : �� (4)
Set(NamedElement) = self.clientDependency.supplier

From our point of view, it is surprising to delete a constraint, whereas it
would have been possible to rename the impacted element or to apply another
resolution. One possible explanation is that the constraints became meaningless
in the new version of the metamodel. Another arguable explanation is that the
lack of a (semi) automated support for co-evolution was the cause of the loss of
those constraints. Otherwise, they would have been easily maintained in the new
version. Furthermore, it is also surprising to �nd deletion of 12 non-impacted
constraints B . For example, constraint (5) expressing that an interface can only
contain operations is deleted.

context Interface inv: �� (5)
self.allFeatures()−>forAll(f | f.oclIsKindOf(Operation))

Similarly, a possible explanation is that those constraints are no more nec-
essary. As a further investigation, we had a look at later versions of UML CD
speci�cations (versions 2.1, 2.2, and 2.3), and the constraints are indeed missing.

5.5 Discussion and Threats to Validity

The preliminary evaluation shows that our approach is able to cope with real
co-evolution of OCL constraints. In the following we discuss the observed results.

1) First of all, as mentioned previously multiple resolutions are used in par-
ticular for the metamodel changes push property (#S12, #S13) and inline class
(#S15, #S16). These results emphasize and con�rm the necessity to propose al-
ternative resolutions in order to cope with realistic scenarios of OCL constraints'
co-evolution. Otherwise, the rates of automatic co-evolution would be lower than
the ones in this paper, with a higher risk of introducing inappropriate solutions.

2) Furthermore, the �rst 7 cases of maintained constraints A underline
the need to also propose the delete strategy #S2 whenever a constraint is im-
pacted, and not always try to maintain the constraint. Moreover, the second
12 cases of deleted constraints B emphasize the fact that even if all impacted
constraints are correctly co-evolved, user intervention would still be needed to
decide whether to keep or to remove some of the non-impacted constraints.

3) Finally, the cases of the semantically not matching constraints in UML
CD (e.g. constraint (3)) underline the need to let the user ignore a proposed
co-evolution. By not applying a particular resolution, the user can manually
co-evolve it and further refactor it w.r.t. her intent.

We now discuss threats to validity (internal, external, and conclusion) after
Wohlin et al. [26] w.r.t. our three evaluation goals #G1, #G2, and #G3.
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Internal Validity. During the analysis of the co-evolution of the OCL con-
straints in practice, it is possible that we could have missed a correspondence
between an original constraint and a co-evolved constraint when the latter is
subject to a strong refactoring. To reduce this risk, in the procedure of our anal-
ysis for each impacted constraint, we investigated the constraints of the new
versions one by one to avoid missing any correspondence. Moreover, other com-
plex changes than the 7 ones we considered may occur in the evolution requiring
additional resolutions that are not in our 17 resolutions. However, in our eval-
uation the 7 complex changes we considered as well as the 17 resolutions were
su�cient in our case studies. Therefore, this threat is acceptable here.

External Validity. We evaluated our tool on a case study of metamodels
and its OCL constraints. However, it is di�cult to generalize our obtained results
for other metamodels and OCL constraints. Nonetheless, the UML CD case study
provided a representative and a complex evolution trace that had a signi�cant
impact on the OCL constraints.

Conclusion Validity. Our evaluation gives promising results demonstrating
that alternative resolutions are used in real cases. The results also indicate that
our 17 resolutions are semantically close to the user need during the co-evolution.
Thus, our evaluation results meet our goals #G1 and #G2. However, we can-
not estimate the quality of the resolutions only based on our UML CD case
study. Third goal #G3 is also met since our tool covers all metamodel changes
that occurred in the UML CD evolution. Yet, more experiments are necessary
to retrieve a more precise measure of the resolutions' quality, their occurrence
frequency, and the bene�t of the ignore option in practice.

6 Related Work

In contrast to models and transformations co-evolution where many works exist
(e.g. [15, 25]), co-evolution of OCL constraints has received little attention so
far. Demuth et al. [5, 6] proposed an approach for OCL co-evolution based on
templates. They provided 11 templates that de�ne a �xed structure for OCL
constraints. Thus, the co-evolution in this case is a re-instantiation of the tem-
plates to update the constraints. However, their approach is not applicable for
arbitrary OCL constraints, and is limited to 11 templates only. They do not
handle metamodel changes that impact the structure of the constraints.

Hassam et al. [7] proposed to co-evolve OCL constraints using QVT [22] a
transformation language. Similarly, Markovic et al. [16, 17] proposed to refactor,
based on QVT, OCL constraints annotated on UML class diagrams when these
last evolve. Kusel et al. [13] discussed the impact of metamodel evolution on
OCL expressions and proposed to resolve impacted expressions. However, they
do not consider an OCL constraint as a whole. In particular, the context is
ignored whereas it can be the impacted part that requires a resolution.

Cabot et al. [3] focused on the metamodel change delete element. In par-
ticular, they aimed at removing only a sub part of the OCL constraint that is
using the deleted element. However, the approach is applicable only to OCL
constraints written in the form of Conjunctive Normal Form (CNF). Buttner et
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al. [2] discussed the impact of changing the multiplicity of a property on OCL
constraints. In our approach we also address this issue in our resolution (#S3-7).

All existing approaches [5�7, 16, 17, 3, 2, 13] consider only the metamodel
change as a factor to propose a resolution. Thus, they de�ne for each meta-
model change only a unique resolution. In contrast, we identi�ed two additional
factors that lead to propose alternative resolutions.

To the best of our knowledge, we are the �rst to consider these issues and
to show that multiple resolutions are needed in practice. We therefore are the
�rst to propose alternative resolution strategies while considering the metamodel
change, the impact location in an OCL constraint, and the context.

7 Conclusion and Future Work

In this paper, we addressed the topic of metamodel and OCL constraints co-
evolutions and proposed a semi-automatic approach with alternative resolution
strategies. We identi�ed two new factors that lead us to propose alternative res-
olutions to the user to chose from. This has the advantage to co-evolve OCL con-
straints w.r.t. the user intent and to avoid applying unintended resolutions. We
evaluated our approach on a big-medium sized case study: the UML CD meta-
model with its OCL constraints. The results show that our approach is suitable
to handle complex co-evolution scenarios of metamodels and OCL constraints.
It reached 72% of 80% of syntactically and semantically correct co-evolution.

Although we focused on the co-evolution of OCL constraints de�ned on top of
metamodels, our approach can also handle the co-evolution of OCL constraints
de�ned on top of object-oriented models in general. Thus in future work, we �rst
aim to evaluate our approach on other applications of OCL constraints such as
OCL queries, or OCL scripts that express model transformations. We further
plan to explore the possibility to allow the user to import external resolutions
in particular to be used along with the ignore option.
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