Abstract
Next-generation sequencing technologies has advanced our knowledge in genomics by a tremendous step in the past years. On the other hand, there are still critical questions left unanswered due to the intrinsic limitations of short read length. To address this issue, several new sequencing platforms came into view. However, a lack of comprehensive understanding of the sequencing error poses a primary challenge for their optimal use. Here, we focus on optical mapping, a high-throughput laboratory technique that provides long-range information of a genome. Existing error model is based on OpGen maps. It is not clear if the model is also good for BioNano maps. In this paper, we try to provide a more accurate error model for BioNano optical maps based on real data. Due to the limited availability of real datasets, as an indirect validation of our model, we predict the regions that are difficult to cover and compare the predicted results with the empirical results (both simulated and real data) on human chromosomes. The results are promising, with most of the difficult regions correctly predicted. Tested on BioNano maps, our model is more accurate than the most popular existing error model developed based on OpGen maps. Although we may not have captured all possible errors of the technology, our model should provide important insights for the development of downstream analysis tools using BioNano optical maps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Fragment size distribution mainly depends on the distribution of nicking sites, thus may not be a strong evidence to show the accuracy of an error model.
- 2.
We noticed that the Laplace scale value increases slightly when the fragment length exceeds 20400 bp; however, since the number of samples decreases drastically as the fragment length grows (see the blue curve), it is reasonable to use the scale value of the majority of long fragments in \([4800\,\text {bp}, 20400\,\text {bp})\) to represent the whole.
References
Anantharaman, T.S., Mishra, B., Schwartz, D.C.: Genomics via optical mapping II: ordered restriction maps. J. Comput. Biol. 4(2), 91–118 (1997)
Anantharaman, T.S., Mishra, B., Schwartz, D.C.: Genomics via optical mapping III: contiging genomic dna and variations. In: The Seventh International Conference on Intelligent Systems for Molecular Biology, vol. 7, pp. 18–27. Citeseer (1999)
Das, S.K., Austin, M.D., Akana, M.C., Deshpande, P., Cao, H., Xiao, M.: Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes. Nucleic Acids Res. 38(18), e177 (2010)
Ganapathy, G., Howard, J.T., Ward, J.M., Li, J., Li, B., Li, Y., Xiong, Y., Zhang, Y., Zhou, S., Schwartz, D.C., et al.: High-coverage sequencing and annotated assemblies of the budgerigar genome. GigaScience 3(1), 1–9 (2014)
Hastie, A.R., Dong, L., Smith, A., Finklestein, J., Lam, E.T., Huo, N., Cao, H., Kwok, P.Y., Deal, K.R., Dvorak, J., et al.: Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex aegilops tauschii genome. PloS one 8(2), e55864 (2013)
Kim, Y., Kim, K.S., Kounovsky, K.L., Chang, R., Jung, G.Y., Jo, K., Schwartz, D.C., et al.: Nanochannel confinement: DNA stretch approaching full contour length. Lab Chip 11(10), 1721–1729 (2011)
Lin, H.C., Goldstein, S., Mendelowitz, L., Zhou, S., Wetzel, J., Schwartz, D.C., Pop, M.: Agora: assembly guided by optical restriction alignment. BMC Bioinf. 13(1), 189 (2012)
Mak, A.C., Lai, Y.Y., Lam, E.T., Kwok, T.P., Leung, A.K., Poon, A., Mostovoy, Y., Hastie, A.R., Stedman, W., Anantharaman, T., et al.: Genome-wide structural variation detection by genome mapping on nanochannel arrays. Genetics 202(1), 351–362 (2016)
Meng, X., Benson, K., Chada, K., Huff, E.J., Schwartz, D.C.: Optical mapping of lambda bacteriophage clones using restriction endonucleases. Nat. Genet. 9(4), 432–438 (1995)
Muggli, M.D., Puglisi, S.J., Boucher, C.: Efficient indexed alignment of contigs to optical maps. In: Brown, D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 68–81. Springer, Heidelberg (2014)
Myers, E.W., Huang, X.: An \(\cal{O}\)(\(n^2\) log \(n\)) restriction map comparison and search algorithm. Bull. Math. Biol. 54(4), 599–618 (1992)
Nagarajan, N., Read, T.D., Pop, M.: Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics 24(10), 1229–1235 (2008)
Ramirez, M.S., Adams, M.D., Bonomo, R.A., Centrón, D., Tolmasky, M.E.: Genomic analysis of acinetobacter baumannii A118 by comparison of optical maps: identification of structures related to its susceptibility phenotype. Antimicrob. Agents Chemother. 55(4), 1520–1526 (2011)
Ray, M., Goldstein, S., Zhou, S., Potamousis, K., Sarkar, D., Newton, M.A., Esterberg, E., Kendziorski, C., Bogler, O., Schwartz, D.C.: Discovery of structural alterations in solid tumor oligodendroglioma by single molecule analysis. BMC Genomics 14(1), 505 (2013)
Sarkar, D.: On the analysis of optical mapping data. Ph.D. thesis, University of Wisconsin-Madison (2006)
Sarkar, D., Goldstein, S., Schwartz, D.C., Newton, M.A.: Statistical significance of optical map alignments. J. Comput. Biol. 19(5), 478–492 (2012)
Teague, B., Waterman, M.S., Goldstein, S., Potamousis, K., Zhou, S., Reslewic, S., Sarkar, D., Valouev, A., Churas, C., Kidd, J.M., et al.: High-resolution human genome structure by single-molecule analysis. Proc. Natl. Acad. Sci. 107(24), 10848–10853 (2010)
Valouev, A., Li, L., Liu, Y.C., Schwartz, D.C., Yang, Y., Zhang, Y., Waterman, M.S.: Alignment of optical maps. J. Comput. Biol. 13(2), 442–462 (2006)
Valouev, A., Schwartz, D.C., Zhou, S., Waterman, M.S.: An algorithm for assembly of ordered restriction maps from single DNA molecules. Proc. Natl. Acad. Sci. 103(43), 15770–15775 (2006)
Waterman, M.S., Smith, T.F., Katcher, H.L.: Algorithms for restriction map comparisons. Nucleic Acids Res. 12(1 Part 1), 237–242 (1984)
Zhou, S., Bechner, M.C., Place, M., Churas, C.P., Pape, L., Leong, S.A., Runnheim, R., Forrest, D.K., Goldstein, S., Livny, M., et al.: Validation of rice genome sequence by optical mapping. BMC Genomics 8(1), 278 (2007)
Zhou, S., Deng, W., Anantharaman, T.S., Lim, A., Dimalanta, E.T., Wang, J., Wu, T., Chunhong, T., Creighton, R., Kile, A., et al.: A whole-genome shotgun optical map of yersinia pestis strain kim. Appl. Environ. Microbiol. 68(12), 6321–6331 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Li, M. et al. (2016). Towards a More Accurate Error Model for BioNano Optical Maps. In: Bourgeois, A., Skums, P., Wan, X., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2016. Lecture Notes in Computer Science(), vol 9683. Springer, Cham. https://doi.org/10.1007/978-3-319-38782-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-38782-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-38781-9
Online ISBN: 978-3-319-38782-6
eBook Packages: Computer ScienceComputer Science (R0)