Skip to main content

Cooperative Trajectory Planning for Multiple UAVs Using Distributed Receding Horizon Control and Inverse Dynamics Optimization Method

  • Conference paper
  • First Online:
Information Technology and Intelligent Transportation Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 454))

Abstract

This paper studies the problem of generating obstacle avoidance trajectories through complex 3-D environments on-board for a group of non homonymic Unmanned Aerial Vehicles (UAVs). First, the collision-free multi-vehicle cooperative trajectory planning problem is mathematically formulated as a decentralized receding horizon optimal control problem (DRH-OCP). Next, a real-time trajectory planning framework based on a decentralized planning scheme which only uses local information, and an inverse dynamics direct method which has high computational efficiency and good convergence properties, is designed to solve the DRH-OCP. Finally, the simulation results demonstrate that the proposed planning strategies successfully generates the trajectories that satisfy the given mission objectives and requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsourdos A, White B, Shanmugavel M (2011) Cooperative path planning of unmanned aerial vehicles. Wiley, UK

    Google Scholar 

  2. Tisdale J, Kim Z, Hedrick JK (2009) Autonomous UAV path planning and estimation: an online path planning framework for cooperative search and localization. IEEE Robot Autom Mag 16:35–42

    Article  Google Scholar 

  3. Shaferman V, Shima T (2008) Unmanned aerial vehicles cooperative tracking of moving ground target in urban environments. J Guid Control Dyn 31(5):1360–1371

    Article  Google Scholar 

  4. Desaraju VR, How JP (2012) Decentralized path planning for multi-agent teams with complex constraints. Auton Robot 32:385–403

    Article  Google Scholar 

  5. Kuwata Y, How JP (2011) Cooperative distributed robust trajectory optimization using receding horizon MILP. IEEE Trans Control Syst Technol 9(2):423–431

    Article  Google Scholar 

  6. Neto AA, Macharet DG, Campos MFM (2009) On the generation of trajectories for multiple UAVs in environments with obstacles. J Intell Robot Syst 57(1–4):123–141

    MATH  Google Scholar 

  7. Defoort M, Kokosy A, Floquet T, Perruquetti W, Palos J (2009) Motion planning for coop-erative unicycle-type mobile robots with limited sensing ranges: a distributed receding horizon approach. Robot Auton Syst 57:1094–1106

    Article  Google Scholar 

  8. Richards A, How J (2004) Decentralized model predictive control of cooperating UAVs. In: 43rd IEEE conference on decision and control, Paradise Island, Bahamas

    Google Scholar 

  9. Beard RW, Mclain TW, Nelson DB, Kingston D, Johanson D (2006) Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. Proc IEEE 94(7):1306

    Article  Google Scholar 

  10. Keviczky T, Vanek B, Borrelli F, Balas GJ (2006) Hybrid decentralized receding horizon control of vehicle formations. In: American control conference, Minnesota, USA

    Google Scholar 

  11. Jia D, Krogh B (2002) Min-max feedback model predictive control for distributed control with communication. IEEE Am Control Conf 6:4507–4545

    Google Scholar 

  12. Inalhan G, Stipanovic DM, Tomlin CJ (2002) Decentralized optimization, with application to multiple aircraft coordination. In: IEEE conference on decision and control, Las Vegas, NV

    Google Scholar 

  13. Dunbary WB, Murray RM (2006) Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4):549–558

    Article  MathSciNet  MATH  Google Scholar 

  14. Keviczky T, Borrelli F, Balas GJ (2006) Decentralized receding horizon control for large scale dynamically decoupled systems. Automatica 42:2105–2115

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuwata Y, Richards A, Schouwenaars T, How JP (2007) Distributed robust receding horizon control for multivehicle guidance. IEEE Trans Control Syst Technol 15(4):627–641

    Article  Google Scholar 

  16. Yakimenko OA (2000) Direct method for rapid prototyping of near-optimal aircraft trajectories. J Guid Control Dyn 23(5):865–875

    Article  Google Scholar 

  17. Lai C-K, Lone M, Thomas P, Whidborne J, Cooke A (2011) On-board trajectory generation for collision avoidance in unmanned aerial vehicles. In: Proceedings of the ieee aerospace conference

    Google Scholar 

  18. Kaminer II, Yakimenko OA, Pascoal AM (2006) Coordinated control of multiple UAVs for time-critical applications. In: Proceedings of the 27th ieee aerospace conference, Big Sky, Montana

    Google Scholar 

  19. Cowling ID, Yakimenko OA, Whidborne JF, Cooke AK (2010) Direct method based control system for an autonomous quadrotor. J Intell Robot Syst 60(2):285–316

    Article  MATH  Google Scholar 

  20. Yakimenko OA, Xu Y, Basset G (2008) Computing short-time aircraft maneuvers using direct methods. In: AIAA guidance, navigation and control conference and exhibit, Honolulu, Hawaii

    Google Scholar 

  21. Edison E, Shima T (2011) Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms. Comput Oper Res 38(1):340–356

    Article  MathSciNet  MATH  Google Scholar 

  22. Etkin B (1972) Dynamics of atmospheric flight. Wiley, New York

    Google Scholar 

  23. Lewis L-PR (2006) Rapid motion planning and autonomous obstacle avoidance for unmanned vehicles. Naval Postgraduate School

    Google Scholar 

  24. Hurni MA, Sekhavat P, Karpenko M, Ross IM (2010) A pseudospectral optimal motion planner for autonomous unmanned vehicles. In: American control conference, Baltimore, MD, USA

    Google Scholar 

  25. Kuwata Y (2007) Trajectory planning for unmanned vehicles using robust receding horizon control. Massachusetts institute of technology

    Google Scholar 

  26. Yu Z, Jing C, Lincheng S (2013) Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control. Chin J Aeronaut 26(4):1038–1056

    Article  Google Scholar 

  27. Kaminer I, Yakimenko O, Dobrokhodov V, Pascoal A, Hovakimyan N, Cao C, Young A, Patel V (2007) Coordinated path following for time-critical missions of multiple UAVs via L1 adaptive output feedback controllers. In: AIAA guidance, navigation and control conference, Hilton Head, South Carolina

    Google Scholar 

  28. Narayan P, Campbell D, Walker R (2008) Multi-objective UAS flight management in time constrained low altitude local environments. In: 46th AIAA aerospace sciences meeting and exhibit, Reno

    Google Scholar 

  29. Drury RG (2010) Trajectory generation for autonomous unmanned aircraft using inverse dynamics. Cranfield University

    Google Scholar 

  30. Storm Shadow UCAV Performance the American Institute of Aeronautics and Astronautics, http://www.aerospaceweb.org/design/ucav/main.shtml

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Y., Wang, C., Gu, X., Chen, J. (2017). Cooperative Trajectory Planning for Multiple UAVs Using Distributed Receding Horizon Control and Inverse Dynamics Optimization Method. In: Balas, V., Jain, L., Zhao, X. (eds) Information Technology and Intelligent Transportation Systems. Advances in Intelligent Systems and Computing, vol 454. Springer, Cham. https://doi.org/10.1007/978-3-319-38789-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38789-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38787-1

  • Online ISBN: 978-3-319-38789-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics