Skip to main content

Computing Nonsimple Polygons of Minimum Perimeter

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2016)

Abstract

We provide exact and approximation methods for solving a geometric relaxation of the Traveling Salesman Problem (TSP) that occurs in curve reconstruction: for a given set of vertices in the plane, the problem Minimum Perimeter Polygon (MPP) asks for a (not necessarily simply connected) polygon with shortest possible boundary length. Even though the closely related problem of finding a minimum cycle cover is polynomially solvable by matching techniques, we prove how the topological structure of a polygon leads to NP-hardness of the MPP. On the positive side, we show how to achieve a constant-factor approximation.

When trying to solve MPP instances to provable optimality by means of integer programming, an additional difficulty compared to the TSP is the fact that only a subset of subtour constraints is valid, depending not on combinatorics, but on geometry. We overcome this difficulty by establishing and exploiting additional geometric properties. This allows us to reliably solve a wide range of benchmark instances with up to 600 vertices within reasonable time on a standard machine. We also show that using a natural geometry-based sparsification yields results that are on average within 0.5 % of the optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that we exclude degenerate holes that consist of only one or two vertices.

  2. 2.

    For simplicity, we will also refer to the problem of computing an MPP as “the MPP”.

References

  1. Althaus, E., Mehlhorn, K.: Traveling salesman-based curve reconstruction in polynomial time. SIAM J. Comput. 31(1), 27–66 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: On the solution of traveling salesman problems. Documenta Mathematica – Journal der DeutschenMathematiker-Vereinigung, ICM, pp. 645–656 (1998)

    Google Scholar 

  3. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1–4), 97–108 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christofides, N.: Worst-case analysis of a new heuristic for the Travelling Salesman Problem, Technical report 388, Graduate School of Industrial Administration, CMU (1976)

    Google Scholar 

  7. Cook, W.J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  8. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley, New York (1998)

    MATH  Google Scholar 

  9. Dey, T.K., Mehlhorn, K., Ramos, E.A.: Curve reconstruction: connecting dots with good reason. Comput. Geom. 15(4), 229–244 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dillencourt, M.B.: A non-Hamiltonian, nondegenerate Delaunay triangulation. Inf. Process. Lett. 25(3), 149–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fekete, S.P., Friedrichs, S., Hemmer, M., Papenberg, M., Schmidt, A., Troegel, J.: Area- and boundary-optimal polygonalization of planar point sets. In: EuroCG 2015, pp. 133–136 (2015)

    Google Scholar 

  12. Fekete, S.P., Haas, A., Hemmer, M., Hoffmann, M., Kostitsyna, I., Krupke, D., Maurer, F., Mitchell, J.S.B., Schmidt, A., Schmidt, C., Troegel, J.: Computing nonsimple polygons of minimum perimeter. CoRR, abs/1603.07077 (2016)

    Google Scholar 

  13. Giesen, J.: Curve reconstruction, the traveling salesman problem and Menger’s theorem on length. In: Proceedings of 15th Annual Symposium on Computational Geometry (SoCG), pp. 207–216 (1999)

    Google Scholar 

  14. Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-city problem. Math. Program. Study 12, 61–77 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Springer, New York (2007)

    Book  MATH  Google Scholar 

  16. Jünger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. In: Handbooks in Operations Research and Management Science, vol. 7, pp. 225–330 (1995)

    Google Scholar 

  17. Land, A.: The solution of some 100-city Travelling Salesman Problems, Technical report, London School of Economics (1979)

    Google Scholar 

  18. Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)

    MATH  Google Scholar 

  19. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pferschy, U., Stanek, R.: Generating subtour constraints for the TSP from pure integer solutions. Department of Statistics and Operations Research, University of Graz, Technical report (2014)

    Google Scholar 

  23. Reinelt, G.: TSPlib - a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wein, R., Berberich, E., Fogel, E., Halperin, D., Hemmer, M., Salzman, O., Zukerman, B.: 2D arrangements. In: CGAL User and Reference Manual, 4.3rd edn. CGAL Editorial Board (2014)

    Google Scholar 

Download references

Acknowledgements

We thank Stephan Friedrichs and Melanie Papenberg for helpful conversations. Parts of this work were carried out at the 30th Bellairs Winter Workshop on Computational Geometry (Barbados) in 2015. We thank the workshop participants and organizers, particularly Erik Demaine. Joseph Mitchell is partially supported by NSF (CCF-1526406). Irina Kostitsyna is supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 639.023.208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor P. Fekete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fekete, S.P. et al. (2016). Computing Nonsimple Polygons of Minimum Perimeter. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38851-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38850-2

  • Online ISBN: 978-3-319-38851-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics