Abstract
ZDDs (Zero-suppressed Binary Decision Diagrams) [Minato 93] have been proposed to store set families compactly. Though more compact than other representations, they still use large amount of memory to support dynamic operations such as taking union and intersection of set families. DenseZDDs and Hybrid DenseZDDs [Denzumi et al. 2014] have been proposed to compress the size of static and dynamic ZDDs, respectively. There exist however no implementations of Hybrid DenseZDDs and their practical performance is unknown. This paper engineers a practical implementation of Hybrid DenseZDDs. Because of our new compression algorithm, our new Hybrid DenseZDDs run in reasonable time using little working memory. Experimental results on the frequent itemset mining problem show that our algorithm uses 33 % of memory compared with a standard ZDD at the cost of 40 % increase in running time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice. In: Proceedings of the 11th Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 84–97. SIAM Press (2010)
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35(8), 677–691 (1986)
Denzumi, S., Kawahara, J., Tsuda, K., Arimura, H., Minato, S.-I., Sadakane, K.: DenseZDD: a compact and fast index for families of sets. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 187–198. Springer, Heidelberg (2014)
Hansen, E.R., Rao, S.S., Tiedemann, P.: Compressing binary decision diagrams. In: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI 2008), pp. 799–800. ACM (2008)
Joannou, S., Raman, R.: Dynamizing succinct tree representations. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 224–235. Springer, Heidelberg (2012)
Minato, S.: Fast factorization method for implicit cube set representation. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 15(4), 377–384 (1996)
Minato, S.-I.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proceeding of Design Automation Conference (DAC 1993), pp. 272–277. IEEE (1993)
Minato, S.-I.: Zero-suppressed BDDs and their applications. J. Softw. Tools Technol. Transf. 3(2), 156–170 (2001)
Minato, S.-I.: SAPPORO BDD package. Hokkaido University (2011). unreleased
Minato, S.-I., Arimura, H.: Frequent pattern mining and knowledge indexing based on zero-suppressed BDDs. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 152–169. Springer, Heidelberg (2007)
Minato, S.-I., Ishiura, N., Yajima, S.: Shared binary decision diagram with attributed edges for efficient boolean function manipulation. In: Proceedings of the 27th Design Automation Conference (DAC 1990), pp. 52–57. IEEE (1990)
Minato, S.-I., Uno, T., Arimura, H.: LCM over ZBDDs: fast generation of very large-scale frequent itemsets using a compact graph-based representation. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 234–246. Springer, Heidelberg (2008)
Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees. ACM Trans. Algorithms, 10(3) (2014). Article No. 16. doi:10.1145/2601073
Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms 3(4), 43 (2007)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Lee, T., Denzumi, S., Sadakane, K. (2016). Engineering Hybrid DenseZDDs. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-38851-9_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-38850-2
Online ISBN: 978-3-319-38851-9
eBook Packages: Computer ScienceComputer Science (R0)