Abstract
We evaluate the performance of fast approximation algorithms for MAX SAT on the comprehensive benchmark sets from the SAT and MAX SAT contests. Our examination of a broad range of algorithmic techniques reveals that greedy algorithms offer particularly striking performance, delivering very good solutions at low computational cost. Interestingly, their relative ranking does not follow their worst case behavior. Johnson’s deterministic algorithm is constantly better than the randomized greedy algorithm of Poloczek et al. [31], but in turn is outperformed by the derandomization of the latter: this 2-pass algorithm satisfies more than \(99\,\%\) of the clauses for instances stemming from industrial applications. In general it performs considerably better than non-oblivious local search, Tabu Search, WalkSat, and several state-of-the-art complete and incomplete solvers, while being much faster. But the 2-pass algorithm does not achieve the excellent performance of Spears’ computationally intense simulated annealing. Therefore, we propose a new hybrid algorithm that combines the strengths of greedy algorithms and stochastic local search to provide outstanding solutions at high speed: in our experiments its performance is as good as simulated annealing, achieving an average loss with respect to the best known value of less that \(0.5\,\%\), while its speed is comparable to the greedy algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This analysis technique was proposed by Pankratov and Borodin [28] and is called “normalization”.
References
Abrame, A., Habet, D.: Ahmaxsat: Description and evaluation of a branch and bound Max-SAT solver. J. Satisfiability, Boolean Model. Comput. 9, 89–128 (2015). www.lsis.org/habetd/Djamal_Habet/MaxSAT.html. Accessed on 02 Feb 2016
Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in clasp. In: ICLP 2012, pp. 211–221 (2012)
Argelich, J., Li, C.M., Manyà, F., Planes, J.: MAX-SAT 2014: Ninth Max-SAT evaluation. www.maxsat.udl.cat/14/. Accessed on 12 Jan 2016
Argelich, J., Li, C.M., Manyà, F., Planes, J.: MAX-SAT 2015: Tenth Max-SAT evaluation. www.maxsat.udl.cat/15/. Accessed on 02 Feb 2016
Belov, A., Diepold, D., Heule, M.J., Järvisalo, M.: Proc. of SAT COMPETITION 2014: Solver and Benchmark Descriptions (2014). http://satcompetition.org/edacc/sc14/. Accessed on 28 Jan 2016
Cai, S., Luo, C., Thornton, J., Su, K.: Tailoring local search for partial MaxSAT. In: AAAI, pp. 2623–2629 (2014). the code is available at http://lcs.ios.ac.cn/caisw/MaxSAT.html. Accessed on 25 Jan 2016
Chen, J., Friesen, D.K., Zheng, H.: Tight bound on Johnson’s algorithm for maximum satisfiability. J. Comput. Syst. Sci. 58, 622–640 (1999)
Costello, K.P., Shapira, A., Tetali, P.: Randomized greedy: new variants of some classic approximation algorithms. In: SODA, pp. 647–655 (2011)
Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp Series 3. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS, vol. 9345, pp. 368–383. Springer, Heidelberg (2015)
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-criteria optimization in answer set programming. In: ICLP, pp. 1–10 (2011)
Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability (SAT) problem: A survey. In: Satisfiability Problem: Theory and Applications, pp. 19–152 (1996)
Heule, M., Weaver, S. (eds.): SAT 2015. LNCS, vol. 9340. Springer, Heidelberg (2015)
Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)
Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study in local optimization. Local Search Comb. Optim. 1, 215–310 (1997)
Kaufmann, B.: Personal communication
Kaufmann, B.: Clasp: A conflict-driven nogood learning answer set solver (version 3.1.3). http://www.cs.uni-potsdam.de/clasp/. Accessed on 28 Jan 2016
Kautz, H.: Walksat (version 51). www.cs.rochester.edu/u/kautz/walksat/, see the source code for further references. Accessed on 27 Jan 2016
Khanna, S., Motwani, R., Sudan, M., Vazirani, U.V.: On syntactic versus computational views of approximability. SIAM J. Comput. 28(1), 164–191 (1998)
Martins, R.: Personal communication
Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Heidelberg (2014)
Martins, R., Manquinho, V., Lynce, I.: Open-WBO: An open source version of the MaxSAT solver WBO (version 1.3.0). http://sat.inesc-id.pt/open-wbo/index.html. Accessed on 25 Jan 2016
Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014)
Mastrolilli, M., Gambardella, L.M.: MAX-2-SAT: How good is Tabu Search in the worst-case? In: AAAI, pp. 173–178 (2004)
Miyazaki, S., Iwama, K., Kambayashi, Y.: Database queries as combinatorial optimization problems. In: CODAS, pp. 477–483 (1996)
Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)
Narodytska, N., Bacchus, F.: EvaSolver. https://www.cse.unsw.edu.au/ninan/. Accessed on 04 Jan 2016
Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: AAAI 2014, pp. 2717–2723 (2014)
Pankratov, D., Borodin, A.: On the relative merits of simple local search methods for the MAX-SAT problem. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 223–236. Springer, Heidelberg (2010)
Poloczek, M.: Bounds on greedy algorithms for MAX SAT. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer, Heidelberg (2011)
Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX SAT. In: SODA, pp. 656–663 (2011)
Poloczek, M., Schnitger, G., Williamson, D.P., van Zuylen, A.: Greedy algorithms for the maximum satisfiability problem: Simple algorithms and inapproximability bounds, In Submission
Poloczek, M., Williamson, D.P., van Zuylen, A.: On some recent approximation algorithms for MAX SAT. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 598–609. Springer, Heidelberg (2014)
Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing. In: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, pp. 521–532 (1993)
Spears, W.M.: Simulated annealing for hard satisfiability problems. In: Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge, pp. 533–558 (1993)
Spielman, D.A., Teng, S.: Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)
Williamson, D.P.: Lecture notes in approximation algorithms, Fall 1998. IBM Research Report RC 21409, IBM Research (1999)
Zhang, Y., Zha, H., Chu, C.H., Ji, X.: Protein interaction interference as a Max-Sat problem. In: Proceedings of the IEEE CVPR 2005 Workshop on Computer Vision Methods for Bioinformatics (2005)
van Zuylen, A.: Simpler 3/4-approximation algorithms for MAX SAT. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 188–197. Springer, Heidelberg (2012)
Acknowledgments
The authors would like to thank Allan Borodin for his valuable comments, and Benjamin Kaufmann and Ruben Martins for their help with optimizing the parameters of their solvers for our setting.
The first author was supported by the Alexander von Humboldt Foundation within the Feodor Lynen program, and by NSF grant CCF-1115256, and AFOSR grants FA9550-15-1-0038 and FA9550-12-1-0200. The second author was supported by NSF grant CCF-1115256.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Poloczek, M., Williamson, D.P. (2016). An Experimental Evaluation of Fast Approximation Algorithms for the Maximum Satisfiability Problem. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-38851-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-38850-2
Online ISBN: 978-3-319-38851-9
eBook Packages: Computer ScienceComputer Science (R0)