Skip to main content

An Experimental Evaluation of Fast Approximation Algorithms for the Maximum Satisfiability Problem

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9685))

Included in the following conference series:

Abstract

We evaluate the performance of fast approximation algorithms for MAX SAT on the comprehensive benchmark sets from the SAT and MAX SAT contests. Our examination of a broad range of algorithmic techniques reveals that greedy algorithms offer particularly striking performance, delivering very good solutions at low computational cost. Interestingly, their relative ranking does not follow their worst case behavior. Johnson’s deterministic algorithm is constantly better than the randomized greedy algorithm of Poloczek et al. [31], but in turn is outperformed by the derandomization of the latter: this 2-pass algorithm satisfies more than \(99\,\%\) of the clauses for instances stemming from industrial applications. In general it performs considerably better than non-oblivious local search, Tabu Search, WalkSat, and several state-of-the-art complete and incomplete solvers, while being much faster. But the 2-pass algorithm does not achieve the excellent performance of Spears’ computationally intense simulated annealing. Therefore, we propose a new hybrid algorithm that combines the strengths of greedy algorithms and stochastic local search to provide outstanding solutions at high speed: in our experiments its performance is as good as simulated annealing, achieving an average loss with respect to the best known value of less that \(0.5\,\%\), while its speed is comparable to the greedy algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This analysis technique was proposed by Pankratov and Borodin [28] and is called “normalization”.

References

  1. Abrame, A., Habet, D.: Ahmaxsat: Description and evaluation of a branch and bound Max-SAT solver. J. Satisfiability, Boolean Model. Comput. 9, 89–128 (2015). www.lsis.org/habetd/Djamal_Habet/MaxSAT.html. Accessed on 02 Feb 2016

    MathSciNet  Google Scholar 

  2. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in clasp. In: ICLP 2012, pp. 211–221 (2012)

    Google Scholar 

  3. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MAX-SAT 2014: Ninth Max-SAT evaluation. www.maxsat.udl.cat/14/. Accessed on 12 Jan 2016

  4. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MAX-SAT 2015: Tenth Max-SAT evaluation. www.maxsat.udl.cat/15/. Accessed on 02 Feb 2016

  5. Belov, A., Diepold, D., Heule, M.J., Järvisalo, M.: Proc. of SAT COMPETITION 2014: Solver and Benchmark Descriptions (2014). http://satcompetition.org/edacc/sc14/. Accessed on 28 Jan 2016

  6. Cai, S., Luo, C., Thornton, J., Su, K.: Tailoring local search for partial MaxSAT. In: AAAI, pp. 2623–2629 (2014). the code is available at http://lcs.ios.ac.cn/caisw/MaxSAT.html. Accessed on 25 Jan 2016

  7. Chen, J., Friesen, D.K., Zheng, H.: Tight bound on Johnson’s algorithm for maximum satisfiability. J. Comput. Syst. Sci. 58, 622–640 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costello, K.P., Shapira, A., Tetali, P.: Randomized greedy: new variants of some classic approximation algorithms. In: SODA, pp. 647–655 (2011)

    Google Scholar 

  9. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp Series 3. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS, vol. 9345, pp. 368–383. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-criteria optimization in answer set programming. In: ICLP, pp. 1–10 (2011)

    Google Scholar 

  11. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability (SAT) problem: A survey. In: Satisfiability Problem: Theory and Applications, pp. 19–152 (1996)

    Google Scholar 

  12. Heule, M., Weaver, S. (eds.): SAT 2015. LNCS, vol. 9340. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  13. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study in local optimization. Local Search Comb. Optim. 1, 215–310 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Kaufmann, B.: Personal communication

    Google Scholar 

  16. Kaufmann, B.: Clasp: A conflict-driven nogood learning answer set solver (version 3.1.3). http://www.cs.uni-potsdam.de/clasp/. Accessed on 28 Jan 2016

  17. Kautz, H.: Walksat (version 51). www.cs.rochester.edu/u/kautz/walksat/, see the source code for further references. Accessed on 27 Jan 2016

  18. Khanna, S., Motwani, R., Sudan, M., Vazirani, U.V.: On syntactic versus computational views of approximability. SIAM J. Comput. 28(1), 164–191 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martins, R.: Personal communication

    Google Scholar 

  20. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Heidelberg (2014)

    Google Scholar 

  21. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: An open source version of the MaxSAT solver WBO (version 1.3.0). http://sat.inesc-id.pt/open-wbo/index.html. Accessed on 25 Jan 2016

  22. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014)

    Google Scholar 

  23. Mastrolilli, M., Gambardella, L.M.: MAX-2-SAT: How good is Tabu Search in the worst-case? In: AAAI, pp. 173–178 (2004)

    Google Scholar 

  24. Miyazaki, S., Iwama, K., Kambayashi, Y.: Database queries as combinatorial optimization problems. In: CODAS, pp. 477–483 (1996)

    Google Scholar 

  25. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Narodytska, N., Bacchus, F.: EvaSolver. https://www.cse.unsw.edu.au/ninan/. Accessed on 04 Jan 2016

  27. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: AAAI 2014, pp. 2717–2723 (2014)

    Google Scholar 

  28. Pankratov, D., Borodin, A.: On the relative merits of simple local search methods for the MAX-SAT problem. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 223–236. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Poloczek, M.: Bounds on greedy algorithms for MAX SAT. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  30. Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX SAT. In: SODA, pp. 656–663 (2011)

    Google Scholar 

  31. Poloczek, M., Schnitger, G., Williamson, D.P., van Zuylen, A.: Greedy algorithms for the maximum satisfiability problem: Simple algorithms and inapproximability bounds, In Submission

    Google Scholar 

  32. Poloczek, M., Williamson, D.P., van Zuylen, A.: On some recent approximation algorithms for MAX SAT. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 598–609. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  33. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing. In: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, pp. 521–532 (1993)

    Google Scholar 

  34. Spears, W.M.: Simulated annealing for hard satisfiability problems. In: Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge, pp. 533–558 (1993)

    Google Scholar 

  35. Spielman, D.A., Teng, S.: Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)

    Article  Google Scholar 

  36. Williamson, D.P.: Lecture notes in approximation algorithms, Fall 1998. IBM Research Report RC 21409, IBM Research (1999)

    Google Scholar 

  37. Zhang, Y., Zha, H., Chu, C.H., Ji, X.: Protein interaction interference as a Max-Sat problem. In: Proceedings of the IEEE CVPR 2005 Workshop on Computer Vision Methods for Bioinformatics (2005)

    Google Scholar 

  38. van Zuylen, A.: Simpler 3/4-approximation algorithms for MAX SAT. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 188–197. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Allan Borodin for his valuable comments, and Benjamin Kaufmann and Ruben Martins for their help with optimizing the parameters of their solvers for our setting.

The first author was supported by the Alexander von Humboldt Foundation within the Feodor Lynen program, and by NSF grant CCF-1115256, and AFOSR grants FA9550-15-1-0038 and FA9550-12-1-0200. The second author was supported by NSF grant CCF-1115256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Poloczek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Poloczek, M., Williamson, D.P. (2016). An Experimental Evaluation of Fast Approximation Algorithms for the Maximum Satisfiability Problem. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38851-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38850-2

  • Online ISBN: 978-3-319-38851-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics