Skip to main content

Fast Exact Computation of Isochrones in Road Networks

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9685))

Included in the following conference series:

  • 1351 Accesses

Abstract

We study the problem of computing isochrones in static and dynamic road networks, where the objective is to identify the boundary of the region in range from a given source within a certain amount of time. While there is a wide range of practical applications for this problem (e. g., urban planning, geomarketing, visualizing the cruising range of a vehicle), there has been little research on fast algorithms for large, realistic inputs, and existing approaches tend to compute more information than necessary. Our contribution is twofold: (1) We propose a more compact but sufficient definition of isochrones, based on which, (2) we provide several easy-to-parallelize, scalable algorithmic approaches for faster computation. By extensive experimental analysis, we demonstrate that our techniques enable fast isochrone computation within milliseconds even on continental networks, significantly faster than the state-of-the-art.

Supported by the EU FP7 under grant agreement no. 609026 (project MOVE-SMART).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Extension of CRP to isochrones is outlined in a patent (US Patent App. 13/649,114; http://www.google.com/patents/US20140107921), however, in a simpler than our intended scenario. Furthermore, the approach was neither implemented nor evaluated.

  2. 2.

    Strictly speaking, isochrone implies time as a resource. While isoline or isocontour would be more precise, we have settled for the term most common in the literature.

References

  1. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: HLDB: location-based services in databases. In: Proceedings of the 20th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems (GIS 2012), pp. 339–348. ACM Press, New York (2012)

    Google Scholar 

  2. Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. Technical report abs/1504.05140, ArXiv e-prints (2015)

    Google Scholar 

  3. Bauer, V., Gamper, J., Loperfido, R., Profanter, S., Putzer, S., Timko, I.: Computing isochrones in multi-modal, schedule-based transport networks. In: Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS 2008), pp. 78:1–78:2. ACM Press, New York (2008)

    Google Scholar 

  4. Baum, M., Bläsius, T., Gemsa, A., Rutter, I., Wegner, F.: Scalable Isocontour Visualization in Road Networks via Minimum-Link Paths. Technical report abs/1602.01777, ArXiv e-prints (2016)

    Google Scholar 

  5. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: hardware-accelerated shortest path trees. J. Parallel Distrib. Comput. 73(7), 940–952 (2013)

    Article  Google Scholar 

  6. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning in road networks. Transportation Science (2015)

    Google Scholar 

  8. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts. In: Proceedings of the 25th International Parallel and Distributed Processing Symposium (IPDPS 2011), pp. 1135–1146. IEEE Computer Society (2011)

    Google Scholar 

  9. Delling, D., Goldberg, A.V., Werneck, R.F.: Faster batched shortest paths inroad networks. In: Proceedings of the 11th Workshop on Algorithmic Approachesfor Transportation Modeling, Optimization, and Systems (ATMOS 2011). OpenAccessSeries in Informatics, vol. 20, pp. 52–63. OASIcs (2011)

    Google Scholar 

  10. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance multi-level routing. In: The Shortest Path Problem: Ninth DIMACS Implementation Challenge, DIMACS Book, vol. 74, pp. 73–92. American Mathematical Society (2009)

    Google Scholar 

  11. Delling, D., Werneck, R.F.: Faster customization of road networks. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 30–42. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Delling, D., Werneck, R.F.: Customizable point-of-interest queries in road networks. IEEE Trans. Knowl. Data Eng. 27(3), 686–698 (2015)

    Article  Google Scholar 

  13. Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Problem: Ninth DIMACS Implementation Challenge, DIMACS Book, vol. 74. American Mathematical Society (2009)

    Google Scholar 

  14. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282. Springer, Heidelberg (2014)

    Google Scholar 

  15. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. ACM J. Exp. Algorithmics 21(1), 108–122 (2016)

    Google Scholar 

  16. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  17. Efentakis, A., Grivas, N., Lamprianidis, G., Magenschab, G., Pfoser, D.: Isochrones, traffic and DEMOgraphics. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS 2013), pp. 548–551. ACM Press, New York (2013)

    Google Scholar 

  18. Efentakis, A., Pfoser, D.: GRASP. Extending graph separators for the single-source shortest-path problem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 358–370. Springer, Heidelberg (2014)

    Google Scholar 

  19. Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. A unified framework for all shortest-path query variants on road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 298–311. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  20. Efentakis, A., Theodorakis, D., Pfoser, D.: Crowdsourcing computing resources for shortest-path computation. In: Proceedings of the 20th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems (GIS 2012), pp. 434–437. ACM Press, New York (2012)

    Google Scholar 

  21. Erwig, M.: The graph voronoi diagram with applications. Networks 36(3), 156–163 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Foti, F., Waddell, P., Luxen, D.: A generalized computational framework for accessibility: from the pedestrian to the metropolitan scale. In: Proceedings of the 4th TRB Conference on Innovations in Travel Modeling. Transportation Research Board (2012)

    Google Scholar 

  23. Gamper, J., Böhlen, M., Cometti, W., Innerebner, M.: Defining isochrones in multimodal spatial networks. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM 2011), pp. 2381–2384. ACM Press, New York (2011)

    Google Scholar 

  24. Gamper, J., Böhlen, M., Innerebner, M.: Scalable computation of isochrones with network expiration. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 526–543. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Geisberger, R.: Advanced Route Planning in Transportation Networks. Ph.D. thesis, Karlsruhe Institute of Technology (2011)

    Google Scholar 

  26. Geisberger, R., Luxen, D., Sanders, P., Neubauer, S., Volker, L.: Fast detour computation for ride sharing. In: Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2010). OpenAccess Series in Informatics, vol. 14, pp. 88–99. OASIcs (2010)

    Google Scholar 

  27. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

    Article  Google Scholar 

  28. Grubwinkler, S., Brunner, T., Lienkamp, M.: Range prediction for EVs via crowd-sourcing. In: Proceedings of the 10th IEEE International Vehicle Power and Propulsion Conference (VPPC 2014), pp. 1–6. IEEE (2014)

    Google Scholar 

  29. Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for shortest-path queries. ACM J. Exp. Algorithmics 13, 1–26 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Innerebner, M., Böhlen, M., Gamper, J.: ISOGA: a system for geographical reachability analysis. In: Liang, S.H.L., Wang, X., Claramunt, C. (eds.) W2GIS 2013. LNCS, vol. 7820, pp. 180–189. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  31. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)

    Article  Google Scholar 

  32. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing many-to-many shortest paths using highway hierarchies. In: Proceedings of the 9th Workshop on Algorithm Engineering and Experiments (ALENEX 2007), pp. 36–45. SIAM (2007)

    Google Scholar 

  33. Marciuska, S., Gamper, J.: Determining objects within isochrones in spatial network databases. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 392–405. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  34. Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network voronoi diagrams: concepts, computational methods, and applications. Int. J. Geogr. Inf. Sci. 22(9), 965–994 (2008)

    Article  Google Scholar 

  35. O’Sullivan, D., Morrison, A., Shearer, J.: Using desktop GIS for the investigation of accessibility by public transport: an isochrone approach. Int. J. Geogr. Inf. Sci. 14(1), 85–104 (2000)

    Article  Google Scholar 

  36. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: Proceedings of the 14th Meeting on Algorithm Engineering and Experiments (ALENEX 2012), pp. 16–29. SIAM (2012)

    Google Scholar 

  38. Schulz, C.: High Quality Graph Partitioning. Ph.D. thesis, Karlsruhe Institute of Technology (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Buchhold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Baum, M., Buchhold, V., Dibbelt, J., Wagner, D. (2016). Fast Exact Computation of Isochrones in Road Networks. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38851-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38850-2

  • Online ISBN: 978-3-319-38851-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics