
Advanced Multilevel Node Separator Algorithms

Peter Sanders and Christian Schulz
Karlsruhe Institute of Technology, Karlsruhe, Germany

{sanders,christian. schulz }@kit. edu

Abstract. A node separator of a graph is a subset S of the nodes such that removing S and its inci-
dent edges divides the graph into two disconnected components of about equal size. In this work, we
introduce novel algorithms to find small node separators in large graphs. With focus on solution quality,
we introduce novel flow-based local search algorithms which are integrated in a multilevel framework.
In addition, we transfer techniques successfully used in the graph partitioning field. This includes the
usage of edge ratings tailored to our problem to guide the graph coarsening algorithm as well as highly
localized local search and iterated multilevel cycles to improve solution quality even further. Experi-
ments indicate that flow-based local search algorithms on its own in a multilevel framework are already
highly competitive in terms of separator quality. Adding additional local search algorithms further
improves solution quality. Our strongest configuration almost always outperforms competing systems
while on average computing 10% and 62% smaller separators than Metis and Scotch, respectively.

1 Introduction

Given a graph G = (V,E), the node separator problem asks to find three disjoint subsets V1, V2 and
S of the node set, such that there are no edges between V1 and V2 and V = V1∪V2∪S. The objective
is to minimize the size of the separator S or depending on the application the weight of its nodes
while V1 and V2 are balanced. Note that removing the set S from the graph results in at least two
connected components. There are many algorithms that rely on small node separators. For example,
small balanced separators are a popular tool in divide-and-conquer strategies [23,21,3], are useful
to speed up the computations of shortest paths [33,9,11] or are necessary in scientific computing to
compute fill reducing orderings with nested dissection algorithms [15].

Finding a balanced node separator on general graphs is NP-hard even if the maximum node
degree is three [6,14]. Hence, one relies on heuristic and approximation algorithms to find small node
separators in general graphs. The most commonly used method to tackle the node separator problem
on large graphs in practice is the multilevel approach. During a coarsening phase, a multilevel
algorithm reduces the graph size by iteratively contracting nodes and edges until the graph is small
enough to compute a node separator by some other algorithm. A node separator of the input graph
is then constructed by successively transferring the solution to the next finer graph and applying
local search algorithms to improve the current solution.

Current solvers are typically more than fast enough for most applications (for example [21,3])
but lack high solution quality. In this work, we address this problem and focus on solution quality.
The remainder of the paper is organized as follows. We begin in Section 2 by introducing basic
concepts and by summarizing related work. Our main contributions are presented in Section 3 where
we transfer techniques previously used for the graph partitioning problem to the node separator
problem and introduce novel flow based local search algorithms for the problem that can be used
in a multilevel framework. This includes edge ratings to guide a graph coarsening algorithm within
a multilevel framework, highly localized local search to improve a node separator and iterated
multilevel cycles to improve solution quality even further. Experiments in Section 4 indicate that
our algorithms are able to provide excellent node separators and outperform other state-of-the-art

ar
X

iv
:1

50
9.

01
19

0v
1

 [
cs

.D
S]

 3
 S

ep
 2

01
5

sanders, christian.schulz
@kit.edu

algorithms. Finally, we conclude with Section 5. All of our algorithms have been implemented in the
open source graph partitioning package KaHIP [30] and will be available within this framework.

2 Preliminaries

2.1 Basic concepts

In the following we consider an undirected graph G = (V = {0, . . . , n − 1}, E) with n = |V |, and
m = |E|. Γ (v) := {u : {v, u} ∈ E} denotes the neighbors of a node v. A set C ⊂ V of a graph is
called closed node set if there are no connections from C to V \ C, i.e. for every node u ∈ C an
edge (u, v) ∈ E implies that v ∈ C as well. In other words, a subset C is a closed node set if there
is no edge starting in C and ending in its complement V \ C. A graph S = (V ′, E′) is said to be a
subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′). We call S an induced subgraph when
E′ = E ∩ (V ′×V ′). For a set of nodes U ⊆ V , G[U] denotes the subgraph induced by U . We define
multiple partitioning problems. The graph partitioning problem asks for blocks of nodes V1,. . . ,Vk
that partition V , i.e., V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i 6= j. A balancing constraint demands
that ∀i ∈ {1..k} : |Vi| ≤ Lmax := (1 + ε)d|V |/ke for some parameter ε. In this case, the objective
is often to minimize the total cut

∑
i<j |Eij | where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. The set

of cut edges is also called edge separator. A node v ∈ Vi that has a neighbor w ∈ Vj , i 6= j, is a
boundary node. An abstract view of the partitioned graph is the so called quotient graph, where
nodes represent blocks and edges are induced by connectivity between blocks. The node separator
problem asks to find blocks, V1, V2 and a separator S that partition V such that there are no edges
between the blocks. Again, a balancing constraint demands |Vi| ≤ (1+ ε)d|V |/ke. However, there is
no balancing constraint on the separator S. The objective is to minimize the size of the separator
|S|. Note that removing the set S from the graph results in at least two connected components and
that the blocks Vi itself do not need to be connected components. By default, our initial inputs
will have unit edge and node weights. However, the results in this paper are easily transferable to
node and edge weighted problems. A matching M ⊆ E is a set of edges that do not share any
common nodes, i.e. the graph (V,M) has maximum degree one. Contracting an edge {u, v} means
to replace the nodes u and v by a new node x connected to the former neighbors of u and v. We set
c(x) = c(u) + c(v). If replacing edges of the form {u,w} , {v, w} would generate two parallel edges
{x,w}, we insert a single edge with ω({x,w}) = ω({u,w}) + ω({v, w}). Uncontracting an edge e
undos its contraction. In order to avoid tedious notation, G will denote the current state of the
graph before and after a (un)contraction unless we explicitly want to refer to different states.

The multilevel approach consists of three main phases. In the contraction (coarsening) phase,
we iteratively identify matchings M ⊆ E and contract the edges in M . Contraction should quickly
reduce the size of the input and each computed level should reflect the global structure of the input
network. Contraction is stopped when the graph is small enough so that the problem can be solved
by some other potentially more expensive algorithm. In the local search (or uncoarsening) phase,
matchings are iteratively uncontracted. After uncontracting a matching, the local search algorithm
moves nodes to decrease the size of the separator or to to improve balance of the block while keeping
the size of the separator. The succession of movements is based on priorities called gain, i.e., the
decrease in the size of the separator. The intuition behind the approach is that a good solution at
one level of the hierarchy will also be a good solution on the next finer level so that local search will
quickly find a good solution.

1

2.2 Related Work

There has been a huge amount of research on graph partitioning so that we refer the reader to
[4,7] for most of the material in this area. Here, we focus on issues closely related to our main
contributions and previous work on the node separator problem. Lipton and Tarjan [22] provide the
planar separator theorem stating that on planar graphs one can always find a separator S in linear
time that satisfies |S| ∈ O(

√
|V |) and |Vi| ≤ 2|V |/3. For more balanced cases, the problem remains

NP-hard [13] even on planar graphs.
For general graphs there exist several heuristics to compute small node separators. A common

and simple method is to derive a node separator from an edge separator [28,32] which is usually
computed by a multilevel graph partitioning algorithm. Clearly, taking the boundary nodes of the
edge separator in one block of the partition yields a node separator. Since one is interested in a small
separator, one can use the smaller set of boundary nodes. A better method has been first described
by Pothen and Fan [28]. The method employs the set of cut edges of the partition and computes the
smallest node separator that can be found by using a subset of the boundary nodes. The main idea
is to compute a subset S of the boundary nodes such that each cut edge is incident to at least one
of the nodes in S (a vertex cover). A problem of the method is that the graph partitioning problem
with edge cut as objective has a somewhat different combinatorial structure compared to the node
separator problem. This makes it unlikely to find high quality solutions with that approach.

Metis [19] and Scotch [26] use a multilevel approach to obtain a node separator. After contrac-
tion, both tools compute a node separator on the coarsest graph using a greedy algorithm. This
separator is then transferred level-by-level, dropping non-needed nodes on each level and applying
Fiduccia-Mattheyses (FM) style local search. Previous versions of Metis and Scotch also included
the capability to compute a node separator from an edge separator.

Recently, Hamann and Strasser [17] presented a max-flow based algorithm specialized for road
networks. Their main focus is not on node separators. They focus on a different formulation of
the edge-cut version graph partitioning problem. More precisely, Hamann and Strasser find Pareto
solutions in terms of edge cut versus balance instead of specifying the allowed amount of imbalance
in advance and finding the best solution satisfying the constraint. Their work also includes an
algorithm to derive node separators, again in a different formulation of the problem, i.e. node
separator size versus balance. We cannot make meaningful comparisions since the paper contains
no data on separator quality and the implementation of the algorithm is not available.

Hager et al. [16] recently proposed a multilevel approach for medium sized graphs using continu-
ous bilinear quadratic programs and a combination of those with local search algorithms. However, a
different formulation of the problem is investigated, i.e. the solver enforces upper and lower bounds
to the block sizes which makes the results incomparable to our results.

LaSalle and Karypis [20] present a shared-memory parallel algorithm to compute node separa-
tors used to compute fill reducing orderings. Within a multilevel approach they evaluate different
local search algorithms indicating that a combination of greedy local search with a segmented FM
algorithm can outperform serial FM algorithms. We compare the solution quality of our algorithm
against the data presented there in our experimental section (see Section 4).

2

3 Advanced Multilevel Algorithms for Node Separators

We now present our core innovations. In brevity, the novelties of our algorithm include edge ratings
during coarsening to compute graph hierarchies that fulfill the needs of the node separator problem
and a combination of localized local search with flow problems to improve the size of the separa-
tor. In addition, we transfer a concept called iterative multilevel scheme previously used in graph
partitioning to further improve solution quality. The description of our algorithm in this section
follows the multilevel scheme. We start with the description of the edge ratings that we use during
coarsening, continue with the description of the algorithm used to compute an initial node separator
on the coarsest level and then describe local search algorithms as well as other techniques.

3.1 Coarsening

Before we explain the matching algorithm that we use in our system, we present the general two-
phase procedure which was already used in multiple graph partitioning frameworks [18,29,25]. The
two-phase approach makes contraction more systematic by separating two issues: A rating function
and a matching algorithm. A rating function indicates how much sense it makes to contract an
edge based on local information. A matching algorithm tries to maximize the sum of the ratings of
the contracted edges looking at the global structure of the graph. While the rating function allows
a flexible characterization of what a “good” contracted graph is, the simple, standard definition of
the matching problem allows to reuse previously developed algorithms for weighted matching. Note
that we can use the same edge rating functions as in the graph partitioning case but also can define
new ones since the problem structure of the node separator problem is different.

We use the Global Path Algorithm (GPA) which runs in near linear time to compute matchings.
GPA was proposed in [24] as a synthesis of the Greedy Algorithm and the Path Growing Algo-
rithm [12]. We choose this algorithm since in [18] it gives empirically considerably better results
than Sorted Heavy Edge Matching, Heavy Edge Matching or Random Matching [31]. GPA scans
the edges in order of decreasing weight but rather than immediately building a matching, it first
constructs a collection of paths and even length cycles. Afterwards, optimal solutions are computed
for each of these paths and cycles using dynamic programming.

Edge Ratings for Node Separator Problems. We want to guide the contraction algorithm so that
coarse levels in the graph hierarchy still contain small node separators if present in the input
problem. This way we can provide a good starting point for the initial node separator routine.
There are a lot of possibilities that we have tried. The most important edge rating functions for an
edge e = {u, v} ∈ E are the following:

exp*(e) = ω(e)/(d(u)d(v))

exp**(e) = ω(e)2/(d(u)d(v))

max(e) = 1/max{d(u), d(v)}
log(e) = 1/ log(d(u)d(v))

The first two ratings have already been successfully used in the graph partitioning field. To give an
intuition behind these ratings, we have to characterize the properties of “good” matchings for the
purpose of contraction in a multilevel algorithm for the node separator problem. Our main objective
is to find a small node separator on the coarsest graph. A matching should contain a large number

3

of edges, e.g. being maximal, so that there are only few levels in the hierarchy and the algorithm can
converge quickly. In order to represent the input on the coarser levels, we want to find matchings
such that the graph after contraction has somewhat uniform node weights and small node degrees.
In addition, we want to keep nodes having a small degree since they are potentially good separators.
Uniform node weights are also helpful to achieve a balanced node separator on coarser levels and
makes local search algorithms more effective. We also included ratings that do not contain the edge
weight of the graph since intuitively a matching does not have to care about large edge weights –
they do not show up in the objective of the node separator problem.

3.2 Initial Node Separators

We stop coarsening as soon as the graph has less than ten thousand nodes. Our approach first
computes an edge separator and then derives a node separator from that. More precisely, we partition
the coarsest graph into two blocks using KaFFPa [30]. We then look at the bipartite graph induced
by set of cut edges including the given node weights. Our goal is to select a minimum weight node
separator in that graph. As a side note, this corresponds to finding a minimum weight vertex cover
in the bipartite graph. Also note that this is similar to the approach of Pothen et al. [28], however
we integrate node weights. To solve the problem, we put all of the nodes of the bipartite graph
into the initial separator S and use the flow-based technique defined below to select the smallest
separator contained in that subgraph. Since our algorithms are randomized, we repeat the overall
procedure twenty five times and pick the best node separator that we have found.

3.3 Local Search

Localized Local Search. In graph partitioning it has been shown that higher localization of local
search can improve solution quality [32,25]. Hence, we develop a novel localized algorithm for the
node separator problem that starts local search only from a couple of selected separator nodes. Our
localized local search procedure is based on the FM scheme. Before we explain our approach to
localization, we present a commonly used FM-variant for completeness.

For each of the two blocks V1, V2 under consideration, a priority queue of separator nodes eligible
to move is kept. The priority is based on the gain concept, i.e. the decrease in the objective function
value when the separator node is moved into that block. More precisely, if a node v ∈ S would be
moved to V1, then the neighbors of v that are in V2 have to be moved into the separator. Hence,
in this case the gain of the node is the weight of v minus the weight of the nodes that have to be
added to the separator. The gain value in the other case (moving v into to V2) is similar. After the
algorithm computed both gain values it chooses the largest gain value such that moving the node
does not violate the balance constraint and performs the movement. Each node is moved at most
once out of the separator within a single local search. The queues are initialized randomly with the
separator nodes. After a node is moved, newly added separator nodes become eligible for movement
(and hence are added to the priority queues).

There are different possibilities to select a block to which a node shall be moved. The most
common variant of the classical FM-algorithm alternates between both blocks. After a stopping
criterion is applied, the best feasible node separator found is reconstructed (among ties choose the
node separator that has better balance). We have two strategies to balance blocks. The first strategy
tries to create a balanced situation without increasing the size of the separator. It always selects the
queue of the heavier block and uses the same roll back mechanism as before. The second strategy

4

allows to increase the size of the node separator. It also selects a node from the queue of the heavier
block, but the roll back mechanism recreates the node separator having the best balance (among
ties we choose the smaller node separator).

Our approach to localization works as follows. Previous local search methods were initialized
with all separator nodes, i.e. all separator nodes are eligible for movement at the beginning. In
contrast, our method is repeatedly initialized only with a subset of the separator nodes (the precise
amount of nodes in the subset is a tuning parameter). Intuitively, this introduces a larger amount
of diversification and boosts the algorithms ability to climb out of local minima.

The algorithm is organized in rounds. One round works as follows. Instead of putting all sep-
arator nodes directly into the priority queues, we put the current separator nodes into a todo list
T . Subsequently, we begin local search starting with a random subset S of the todo list T . We
select the subset S by repeatedly picking a random node v from T . We add v to S if it still is a
separator node and has not been moved by a previous local search in that round. Either way, v is
removed from the todo list. Our localized search is restricted to the movement of nodes that have
not been touched by a previous local search during the round. This assures that each node is moved
at most once out of the separator during a round of the algorithm and avoids cyclic local search.
By default our local search routine first uses classic local search (including balancing) to get close
to a good solution and afterwards uses localization to improve the result further. We repeat this
until no further improvement is found.

We now give intuition why localization of local search boosts the algorithms ability to climb out
of local minima. Consider a situation in which a node separator is a locally optimal in the sense that
at least two node movements are necessary until moving a node out of the separator with positive
gain is possible. Recall that classical local search is initialized with all separator nodes (in this case
all of them have negative gain values). It then starts to move nodes with negative gain at multiple
places of the graph. When it finally moves nodes with positive gain the separator is already much
worse than the input node separator. Hence, the movement of these positive gain nodes does not
yield an improvement with respect to the given input partition. On the other hand, a localized local
search that starts close to the nodes with positive gain, can find the positive gain nodes by moving
only a small number of nodes with negative gain. Since it did not move as many negative gain nodes
as the classical local search, it may still finds an improvement with respect to the input.

Maximum Flows as Local Search. We define the node-capacitated flow problem F = (VF , EF) that
we solve to improve a given node separator as follows. First we introduce a few notations. Given a set
of nodes A ⊂ V , we define its border ∂A := {u ∈ A | ∃(u, v) ∈ E : v 6∈ A}. The set ∂1A := ∂A ∩ V1
is called left border of A and the set ∂2A := ∂A ∩ V2 is called right border of A. An A induced flow
problem F is the node induced subgraph G[A] using ∞ as edge-capacities and the node weights of
the graph as node-capacities. Additionally there are two nodes s, t that are connected to the border
of A. More precisely, s is connected to all left border nodes ∂1A and all right border nodes ∂2A are
connected to t. These new edges get capacity ∞. Note that the additional edges are directed. F
has the balance property if each (s,t)-flow induces a balanced node separator in G, i.e. the blocks Vi
fulfill the balancing constraint. The basic idea is to construct a flow problem F having the balance
property. We now explain how we find such a subgraph. We start by setting A to S and extend
it by performing two breadth first searches (BFS). The first BFS is initialized with the current
separator nodes S and only looks at nodes in block V1. The same is done during the second BFS
with the difference that we now look at nodes from block V2. Each node touched by any of the BFS
is added to A. The first BFS is stopped as soon as the size of the newly added nodes would exceed

5

s t

A

S

G
V ∗
1

V ∗
2

Fig. 1. The construction of an A induced flow problem F is shown. Two breadth first searches are started to define
the area A – one into the block on the left hand side and one into the block on the right hand side. A solution of the
flow problem yields the smallest node separator that can be found within the area. The area A is chosen so that each
node separator that can be found in the area yields a feasible separator for the original problem.

Lmax − c(V2) − c(S). Similarly, the second BFS is stopped as soon as the size of the newly added
nodes would exceed Lmax − c(V1)− c(S).

A solution of the A induced flow problem yields a valid node separator of the original graph:
First, since all edges in our flow network have capacity ∞ and the separator S is contained in
the problem, a maximum flow yields a separator S′, VF = V ′1 ∪ V ′2 ∪ S′, in the flow network that
separates s ∈ V ′1 from t ∈ V ′2 . Since there is a one-to-one mapping between the nodes of our flow
problem and the nodes of the input graph, we directly obtain a separator in the original network
V = V ∗1 ∪ V ∗2 ∪ S′. Additionally, the node separator computed by our method fulfills the balance
constraint – presuming that the input solution is balanced. To see this, we consider the size of V ∗1 .
We can bound the size of this block by assuming that all of the nodes that have been touched by the
second BFS get assigned to V ∗1 (including the old separator S). However, in this case the balance
constraint is still fulfilled c(V ∗1) ≤ c(V1) + c(S) + Lmax − c(V1)− c(S) = Lmax. The same holds for
the opposite direction. Note that the separator is always smaller or equal to the input separator
since S is contained in the construction.

To solve the node-capacitated flow problem F , we transform it into a flow problem H without
node-capacities. We use a standard technique [1]: first we insert the source and the sink into our
model. Then, for each node u in our flow problem F that is not the source or the sink, we introduce
two nodes u1 and u2 in VH which are connected by a directed edge (u1, u2) ∈ EH with an edge-
capacity set to the node-capacity of the current node. For an edge (u, v) ∈ EF not involving the
source or the sink, we insert (u2, v1) into EH with capacity ∞. If u is the source s, we insert (s, v1)
and if v is the sink, we insert (u2, t) into EH. In both cases we use capacity ∞.

Larger Flow Problems and Better Balanced Node Separators. The definition of the flow problem to
improve a node separator requires that each cut in the flow problem corresponds to a balanced node
separator in the original graph. We now simplify this definition and stop the BFSs if the size of
the touched nodes exceeds (1 + α)Lmax − c(Vi)− c(S) with α ≥ 0. We then solve the flow problem
and check afterwards if the corresponding node separator is balanced. If this is the case, we accept
the node separator and continue. If this is not the case, we set α := α/2 and repeat the procedure.
After ten unsuccessful iterations, we set α = 0. Additionally, we stop the process if the flow value
of the flow problem corresponds to the separator weight of the input separator.

We apply heuristics to extract a better balanced node separator from the solved max-flow prob-
lem. Picard and Queyranne [27] made the observation that one (s, t)-max-flow contains information
about all minimum (s,t)-cuts in the graph (however, finding the most balanced minimum cut is

6

closed node set sweep

a
a

b
b

c

c

d

d

ee f

f

gg h

h

Fig. 2. Left: the set C = {a, d, e, f} is a closed node set since no edge is starting in C and ending in V \C. Right:
using a reverse topological ordering of a DAG one can output multiple closed node sets.

NP-hard [5]). We follow the heuristic approach of [29] and extract better balanced (s,t)-cuts from
the given maximum flow in H. This results in better balanced separators in the node-capacitated
problem F and hence in better balanced node separators for our original problem.

To be more precise, Picard and Queyranne have shown that each closed node set in the residual
graph of a maximum (s, t)-flow that contains the source s but not the sink induces a minimum s-t
cut. Observe that a cycle in the residual graph cannot contain a node of both, a closed node set
and its complement. Hence, Picard and Queyranne compactify the residual network by contracting
all strongly connected components. Afterwards, their algorithm tries to find the most balanced
minimum cut by enumeration. In [29], we find better balanced cuts heuristically. First a random
topological order of the strongly connected component graph is computed. This is then scanned in
reverse order. By subsequently adding strongly connected components several closed node sets are
obtained, each inducing a minimum s-t cut. The closed node set with the best occurred balance
among multiple runs of the algorithm with different random topological orders is returned. An
example closed node set and the scanning algorithm is shown in Figure 2.

3.4 Miscellanea

An easy way to obtain high quality node separators is to use a multilevel algorithm multiple times
using different random seeds and use the best node separator that has been found. However, instead
of performing a full restart, one can use the information that has already been obtained. In the graph
partitioning context, the notion of iterated multilevel schemes has been introduced by Walshaw [35]
and later has been augmented to more complex cycles [29]. Here, one transfers a solution of a
previous multilevel cycle down the hierarchy and uses it as initial solution. More precisely, this can
be done by not contracting any cut edge.

We transfer this technique to the node separator problem as follows. One can interpret a node
separator as a three way partition V1, V2, S. Hence, to obtain an iterated multilevel scheme for the
node separator problem, our matching algorithm is not allowed to match any edge that runs between
Vi and S (i = 1, 2). Hence, when contraction is done, every edge leaving the separator will remain
and we can transfer the node separator down in the hierarchy. Thus a given node separator can be
used as initial node separator of the coarsest graph (having the same balance and size as the node
separator of the finest graph). This ensures non-decreasing quality, if the local search algorithm
guarantees no worsening. To increase diversification during coarsening in later V-cycles we pick a
random edge rating of the ones described above.

7

4 Experiments

Methodology. We have implemented the algorithm described above within the KaHIP framework
using C++ and compiled all algorithms using gcc 4.63 with full optimization’s turned on (-O3
flag). We integrated our algorithms in KaHIP v0.71 and compare ourselves against Metis 5.1 and
Scotch 6.0.4 using the quality option that has focus on solution quality instead of running time.
Our new codes will be included into the KaHIP graph partitioning framework. We perform ten
repetitions of each algorithm using different random seeds for initialization. Each run was made on
a machine that has four Octa-Core Intel Xeon E5-4640 processors running at 2.4GHz. It has 512
GB local memory, 20 MB L3-Cache and 8x256 KB L2-Cache. Our main objective is the cardinality
of node separators on the input graph. In our experiments, we use ε = 20% since this is the default
value for node separators in Metis. We mostly present two kinds of views on the data: average values
and minimum values as well as plots that show the ratios of the quality achieved by the algorithms.

Algorithm Configuration. We performed a number of experiments to evaluate the influence and
choose the parameters of our algorithms. We mark the instances that have also been used for
the parameter tuning in Appendix B with a * and exclude these graphs when we report average
values over multiple instances in comparisons with our competitors. However, our full algorithm
is not too sensitive about the precise choice with most of the parameters. In general, using more
sophisticated edge ratings improves solution quality slightly and improves partitioning speed over
using edge weight. We exclude further experiments from the main text and use the exp∗ edge rating
function as a default since it has a slight advantage in our preliminary experiments. In later iterated
multilevel cycles, we pick one of the other ratings at random to introduce more diversification.
Indeed, increasing the number of V-cycles reduces the objective function. We fixed the number
of V-cycles to three. By default, we use the better balanced minimum cut heuristic in our node
separator algorithm since it keeps the node separator cardinality and improves balance. In the
localized local search algorithm, we set the size of the random subset of separator nodes from which
local search is started |S| to five.

Instances. We use graphs from various sources to test our algorithm. We use all 34 graphs from Chris
Walshaw’s benchmark archive [34]. Graphs derived from sparse matrices have been taken from the
Florida Sparse Matrix Collection [8]. We also use graphs from the 10th DIMACS Implementation
Challenge [2] website. Here, rggX is a random geometric graph with 2X nodes where nodes represent
random points in the unit square and edges connect nodes whose Euclidean distance is below
0.55

√
lnn/n. The graph delX is a Delaunay triangulation of 2X random points in the unit square.

The graphs af_shell9, thermal2, nlr and nlpkkt240 are from the matrix and the numeric section
of the DIMACS benchmark set. The graphs europe and deu are large road networks of Europe
and Germany taken from [10]. Due to large running time of our algorithm, we exclude the graph
nlpkkt240 from general comparisons and only use our full algorithm to compute a result. Basic
properties of the graphs under consideration can be found in Appendix A, Table 2.

8

4.1 Separator Quality

Algorithm Avg. Inc. tavg[s] # ≤Metis

Metis 10.3% 0.12 -
Scotch 62.2% 0.23 0%

Flow0 3.3% 17.72 89%
Flow0.5 0.1% 38.21 96%
Flow1 0.3% 47.81 94%

LSFlow0 1.5% 28.61 96%
LSFlow0.5 -0.1% 49.08 94%
LSFlow1 - 58.50 96%

Table 1. Avg. increase in separator size over
LSFlow1 , avg. running times of the different al-
gorithms and relative number of instances with a
separator smaller or equal to Metis (# ≤Metis).

We now assess the size of node separators derived by
our algorithms and by other state-of-the-art tools, i.e.
Metis and Scotch as well as the data recently presented
by LaSalle and Karypis [20]. We use multiple configu-
rations of our algorithm to estimate the influence of
the multiplicative factor α that controls the size of
the flow problems solved during uncoarsening and to
see the effect of adding local search. The algorithms
named Flowα use only flows during uncoarsening as lo-
cal search with a multiplicative factor α. Algorithms
labeled LSFlowα start on each level with local search
and localized local search until no improvement is found
and afterwards perform flow based local search with a
multiplicative factor α. Table 1 summarizes the results
of the experiments. We present detailed per instances
results in Appendix B, Table 3 (separator size and bal-
ance) and Table 4 (running times).

We now summarize the results. First of all, only using flow-based local search during uncoars-
ening is already highly competitive, even for small flow problems with α = 0. On average, Flow0

computes 6.7% smaller separators than Metis and 57% than Scotch. It computes a smaller or equally
sized separator than Metis in 89% of the cases and than Scotch in every case. However, it also needs
more time to compute a result. This is due to the large flow problems that have to be solved. Indeed,
increasing the value of α, i.e. searching for separators in larger areas around the initial separator,
improves the objective further at the cost of running time. For example, increasing α to 0.5 reduces
the average size of the computed separator by 3.2%, but also increases the running time by more
than a factor 2 on average. Using even larger values of α > 1 did not further improve the result
so that we do not include the data here. Adding non-flow-based local search also helps to improve
the size of the separator. For example, it improves the separator size by 1.8% when using α = 0.
However, the impact of non-flow-based local search decreases for larger values of α.

The strongest configuration of our algorithm is LSFlow1. It computes smaller or equally sized
separators than Metis in all but two cases and than Scotch in every case. On average, separators
are 10.3% smaller than the separators computed by Metis and 62.2% than the ones computed by
Scotch. Figure 3 shows the average improvement ratios over Metis and Scotch on a per instance

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

R
a
ti

o

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

R
a
ti

o

Fig. 3. Improvement of LSFlow1 per instance over Metis (left) and Scotch (right) sorted by absolute value of ratio.

9

basis, sorted by absolute value of improvement. The largest improvement over Metis was obtained on
the road network europe where our separator is a factor 2.3 smaller whereas the largest improvement
over Scotch is on add32 where our separator is a factor 12 smaller. On the instance G2_circuitMetis
computes a 19.9% smaller separator which is the largest improvement of Metis over our algorithm.

We now compare the size of our separators against the recently published data by LaSalle
and Karypis [20]. The networks used therein that are publicly available are auto, nlr, del24 and
nlpkkt240. On these graphs our strongest configuration computes separators that are 10.7%, 10.0%,
20.1% and 27.1% smaller than their best configuration (Greedy+Segmented FM), respectively.

5 Conclusion

In this work, we derived algorithms to find small node separators in large graphs. We presented
a multilevel algorithm that employs novel flow-based local search algorithms and transferred tech-
niques successfully used in the graph partitioning field to the node separator problem. This includes
the usage of edge ratings tailored to our problem to guide the graph coarsening algorithm as well as
highly localized local search and iterated multilevel cycles to improve solution quality even further.
Experiments indicate that using flow-based local search algorithms as only local search algorithm
in a multilevel framework is already highly competitive in terms of separator quality.

Important future work includes shared-memory parallelization of our algorithms, e.g. currently
most of the running time in our algorithm is consumed by the max-flow solver so that a parallel solver
will speed up computations. In addition, it is possible to define a simple evolutionary algorithm
for the node separator problem by transferring the iterated multilevel scheme to multiple input
separators. This will likely result in even better solutions.

References

1. R. K. Ahuja, T.L Magnanti, and J. B. Orlin. Network flows: Theory, algorithms, and applications, 1993.
2. D. Bader, A. Kappes, H. Meyerhenke, P. Sanders, C. Schulz, and D. Wagner. Benchmarking for Graph Clustering

and Partitioning. In Encyclopedia of Social Network Analysis and Mining. Springer, 2014.
3. S. N. Bhatt and F. T. Leighton. A framework for solving vlsi graph layout problems. Journal of Computer and

System Sciences, 28(2):300 – 343, 1984.
4. C. Bichot and P. Siarry, editors. Graph Partitioning. Wiley, 2011.
5. P. Bonsma. Most Balanced Minimum Cuts. Discrete Applied Mathematics, 158(4):261–276, 2010.
6. T. N. Bui and C. Jones. Finding Good Approximate Vertex and Edge Partitions is NP-hard. Information

Processing Letters, 42(3):153–159, 1992.
7. A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances in Graph Partitioning. In

Algorithm Engineering – Selected Topics, to app., ArXiv:1311.3144, 2014.
8. T. Davis. The University of Florida Sparse Matrix Collection.
9. D. Delling, M. Holzer, K. Müller, F. Schulz, and D. Wagner. High-performance multi-level routing. The Shortest

Path Problem: Ninth DIMACS Implementation Challenge, 74:73–92, 2009.
10. D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning Algorithms. In Algorithmics

of Large and Complex Networks, volume 5515 of LNCS State-of-the-Art Survey, pages 117–139. Springer, 2009.
11. J. Dibbelt, B. Strasser, and D. Wagner. Customizable contraction hierarchies. In 13th International Symposium

on Experimental Algorithms (SEA’14), pages 271–282. Springer, 2014.
12. D. Drake and S. Hougardy. A Simple Approximation Algorithm for the Weighted Matching Problem. Information

Processing Letters, 85:211–213, 2003.
13. J. Fukuyama. NP-Completeness of the Planar Separator Problems. Journal of Graph Algorithms and Applications,

10(2):317–328, 2006.
14. M. R. Garey and D. S. Johnson. Computers and Intractability, volume 29. WH Freeman & Co., San Francisco,

2002.
15. A. George. Nested Dissection of a Regular Finite Element Mesh. SIAM Journal on Numerical Analysis, 10(2):345–

363, 1973.

10

16. W. W. Hager, J. T. Hungerford, and I. Safro. A Multilevel Bilinear Programming Algorithm For the Vertex
Separator Problem. Technical report, 2014.

17. M. Hamann and B. Strasser. Graph bisection with pareto-optimization. arXiv preprint arXiv:1504.03812, 2015.
18. M. Holtgrewe, P. Sanders, and C. Schulz. Engineering a Scalable High Quality Graph Partitioner. Proceedings

of the 24th International Parallal and Distributed Processing Symposium, pages 1–12, 2010.
19. G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM

Journal on Scientific Computing, 20(1):359–392, 1998.
20. D. LaSalle and G. Karypis. Efficient nested dissection for multicore architectures. In Euro-Par 2015: Parallel

Processing, pages 467–478. Springer, 2015.
21. C. E. Leiserson. Area-Efficient Graph Layouts. In 21st Symposium on Foundations of Computer Science, pages

270–281. IEEE, 1980.
22. R. J. Lipton and R. E. Tarjan. A Separator Theorem for Planar Graphs. SIAM Journal on Applied Mathematics,

36(2):177–189, 1979.
23. R. J. Lipton and R. E. Tarjan. Applications of a Planar Separator Theorem. SIAM Journal On Computing,

9(3):615–627, 1980.
24. J. Maue and P. Sanders. Engineering Algorithms for Approximate Weighted Matching. In Proceedings of the 6th

Workshop on Experimental Algorithms (WEA’07), volume 4525 of LNCS, pages 242–255. Springer, 2007.
25. V. Osipov and P. Sanders. n-Level Graph Partitioning. In 18th European Symposium on Algorithms: Part I,

volume 6346 of LNCS, pages 278–289. Springer, 2010.
26. F. Pellegrini. Scotch Home Page. http://www.labri.fr/pelegrin/scotch.
27. J. C. Picard and M. Queyranne. On the Structure of All Minimum Cuts in a Network and Applications.

Mathematical Programming Studies, 13:8–16, 1980.
28. A. Pothen, H. D. Simon, and K. P. Liou. Partitioning Sparse Matrices with Eigenvectors of Graphs. SIAM

Journal on Matrix Analysis and Applications, 11(3):430–452, 1990.
29. P. Sanders and C. Schulz. Engineering Multilevel Graph Partitioning Algorithms. In 19th European Symposium

on Algorithms, volume 6942 of LNCS, pages 469–480. Springer, 2011.
30. P. Sanders and C. Schulz. Think Locally, Act Globally: Highly Balanced Graph Partitioning. In 12th International

Symposium on Experimental Algorithms (SEA’13). Springer, 2013.
31. K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high performance scientific simulations. In

J. Dongarra et al., editor, CRPC Parallel Computing Handbook. Morgan Kaufmann, 2000.
32. C. Schulz. High Quality Graph Partititioning. PhD thesis, Karlsruhe Institute of Technology, 2013.
33. F. Schulz, D. Wagner, and C. Zaroliagis. Using multi-level graphs for timetable information in railway systems.

In Proceedings of Algorithm Engineering and Experiments (ALENEX), pages 43–59. Springer, 2002.
34. A. J. Soper, C. Walshaw, and M. Cross. A Combined Evolutionary Search and Multilevel Optimisation Approach

to Graph-Partitioning. Journal of Global Optimization, 29(2):225–241, 2004.
35. C. Walshaw. Multilevel Refinement for Combinatorial Optimisation Problems. Annals of Operations Research,

131(1):325–372, 2004.

11

http://www. labri.fr/pelegrin/scotch

A Benchmark Set

Graph n m Graph n m

Small Walshaw Graphs UF Graphs
add20 2 395 7 462 cop20k_A* 99 843 1 262 244
data 2 851 15 093 2cubes_sphere* 101 492 772 886
3elt 4 720 13 722 thermomech_TC 102 158 304 700
uk 4 824 6 837 cfd2 123 440 1 482 229
add32 4 960 9 462 boneS01 127 224 3 293 964
bcsstk33 8 738 291 583 Dubcova3 146 689 1 744 980
whitaker3 9 800 28 989 bmwcra_1 148 770 5 247 616
crack 10 240 30 380 G2_circuit 150 102 288 286
wing_nodal* 10 937 75 488 c-73 169 422 554 926
fe_4elt2 11 143 32 818 shipsec5 179 860 4 966 618
vibrobox 12 328 165 250 cont-300 180 895 448 799
bcsstk29* 13 992 302 748 Large Walshaw Graphs
4elt 15 606 45 878 598a 110 971 741 934
fe_sphere 16 386 49 152 fe_ocean 143 437 409 593
cti 16 840 48 232 144 144 649 1 074 393
memplus 17 758 54 196 wave 156 317 1 059 331
cs4 22 499 43 858 m14b 214 765 1 679 018
bcsstk30 28 924 1 007 284 auto 448 695 3 314 611
bcsstk31 35 588 572 914 Large Other Graphs
fe_pwt 36 519 144 794 del23 ≈8.4M ≈25.2M
bcsstk32 44 609 985 046 del24 ≈16.7M ≈50.3M
fe_body 45 087 163 734 rgg23 ≈8.4M ≈63.5M
t60k* 60 005 89 440 rgg24 ≈16.7M ≈132.6M
wing 62 032 121 544 deu ≈4.4M ≈5.5M
brack2 62 631 366 559 eur ≈18.0M ≈22.2M
finan512* 74 752 261 120 af_shell9 ≈504K ≈8.5M
fe_tooth 78 136 452 591 thermal2 ≈1.2M ≈3.7M
fe_rotor 99 617 662 431 nlr ≈4.2M ≈12.5M

nlpkkt240 ≈27.9M ≈373M

Table 2. Basic properties of the instances used for evaluation.

B Detailed per Instance Results

12

Metis Scotch LSFlow0 LSFlow0.5 LSFlow1 Flow0 Flow0.5 Flow1
Graph Avg. Best Bal. Avg. Best Bal. Avg. Best Bal. Avg. Best Bal. Avg. Best Bal. Avg. Best Bal. Avg. Best Bal. Avg. Best Bal.

144 1 539 1 511 1.13 1 639 1 602 1.00 1 482 1 467 1.12 1 444 1 437 1.19 1 445 1 439 1.19 1 495 1 481 1.09 1 444 1 437 1.20 1 446 1 437 1.19
2cubes_sphere 1 398 1 335 1.11 1 587 1 530 1.00 1 265 1 245 1.14 1 228 1 221 1.19 1 230 1 221 1.19 1 274 1 266 1.11 1 237 1 221 1.18 1 235 1 221 1.18
3elt 42 42 1.09 50 46 1.00 42 42 1.11 42 42 1.11 42 42 1.11 42 42 1.11 42 42 1.11 42 42 1.11
4elt 69 68 1.02 82 73 1.00 68 68 1.01 68 68 1.01 68 68 1.01 68 68 1.02 68 68 1.01 68 68 1.01
598a 615 603 1.03 639 629 1.00 594 593 1.04 593 593 1.03 593 593 1.03 594 593 1.04 593 593 1.03 593 593 1.03
add20 25 23 1.09 142 128 1.10 26 23 1.11 23 23 1.08 24 23 1.08 28 23 1.10 23 23 1.08 24 23 1.08
add32 1 1 1.08 14 4 1.00 1 1 1.12 1 1 1.12 1 1 1.12 1 1 1.12 1 1 1.12 1 1 1.12
af_shell9 934 885 1.00 1 382 1 095 1.00 880 880 1.06 880 880 1.06 880 880 1.06 880 880 1.06 880 880 1.06 880 880 1.06
auto 2 109 2 073 1.18 3 158 2 547 1.00 2 034 2 021 1.19 1 986 1 977 1.20 1 992 1 978 1.20 2 093 2 062 1.17 1 992 1 981 1.20 1 988 1 978 1.20
bcsstk29 180 180 1.00 260 234 1.01 180 180 1.02 180 180 1.11 180 180 1.11 180 180 1.01 180 180 1.11 180 180 1.10
bcsstk30 208 206 1.04 439 393 1.02 206 206 1.00 206 206 1.00 206 206 1.00 206 206 1.00 206 206 1.00 206 206 1.00
bcsstk31 298 285 1.07 482 437 1.04 271 268 1.10 268 268 1.17 268 268 1.17 271 270 1.09 268 268 1.17 268 268 1.17
bcsstk32 276 252 1.19 752 463 1.04 236 229 1.19 239 229 1.18 232 229 1.20 252 239 1.17 239 229 1.18 233 229 1.20
bcsstk33 421 421 0.96 549 179 1.21 282 262 1.18 267 261 1.20 283 265 1.19 292 274 1.17 272 266 1.20 288 266 1.19
bmwcra_1 318 318 1.13 1 006 576 1.06 318 318 1.14 350 318 1.13 350 318 1.13 318 318 1.14 350 318 1.13 350 318 1.13
boneS01 1 583 1 542 1.08 4 137 3 969 1.00 1 525 1 500 1.04 1 500 1 500 1.10 1 500 1 500 1.10 1 524 1 500 1.04 1 500 1 500 1.10 1 500 1 500 1.10
brack2 182 181 1.07 237 214 1.00 181 181 1.07 181 181 1.07 181 181 1.07 181 181 1.07 181 181 1.07 181 181 1.07
cfd2 1 040 1 030 1.05 1 303 1 163 1.00 1 030 1 030 1.06 1 030 1 030 1.09 1 030 1 030 1.08 1 030 1 030 1.06 1 030 1 030 1.08 1 030 1 030 1.07
cont-300 598 598 1.00 616 598 1.00 598 598 1.00 598 598 1.00 579 534 1.06 598 598 1.02 598 598 1.18 598 598 1.18
cop20k_A 680 660 1.02 1 904 1 833 1.00 613 613 1.04 613 613 1.04 613 613 1.04 613 613 1.04 613 613 1.04 613 613 1.04
crack 72 69 1.08 92 81 1.00 69 68 1.13 68 68 1.16 68 68 1.16 69 68 1.13 68 68 1.16 68 68 1.16
cs4 289 281 1.11 332 323 1.00 281 279 1.09 267 264 1.19 268 264 1.19 284 282 1.08 267 265 1.19 269 265 1.18
cti 268 266 1.00 291 283 1.00 267 266 0.99 266 266 0.98 266 266 0.98 267 266 1.01 266 266 1.00 266 266 1.00
data 59 45 1.10 69 64 1.00 44 41 1.17 42 41 1.18 43 41 1.18 45 43 1.15 42 41 1.17 43 41 1.18
del23 2 486 2 434 1.03 2 933 2 741 1.00 2 050 2 048 1.01 2 048 2 048 1.05 2 048 2 048 1.04 2 050 2 048 1.01 2 048 2 048 1.04 2 048 2 048 1.04
del24 3 541 3 472 1.01 4 004 3 792 1.00 2 908 2 904 1.01 2 907 2 904 1.03 2 907 2 904 1.03 2 908 2 904 1.01 2 907 2 904 1.03 2 907 2 904 1.03
deu 241 217 1.07 325 286 1.00 152 152 1.04 145 145 1.12 145 145 1.12 152 152 1.04 145 145 1.12 145 145 1.12
Dubcova3 406 383 1.02 1 495 1 395 1.00 383 383 1.04 383 383 1.16 383 383 1.15 383 383 1.05 383 383 1.16 383 383 1.18
eur 430 349 1.09 620 486 1.01 218 109 1.07 208 200 1.12 206 195 1.13 218 109 1.07 208 200 1.12 206 195 1.13
fe_4elt2 66 66 0.99 69 67 1.00 66 66 0.99 66 66 0.99 66 66 0.99 66 66 1.02 66 66 1.04 66 66 1.04
fe_body 86 65 1.11 160 122 1.01 78 66 1.12 77 61 1.15 75 62 1.14 78 66 1.12 77 61 1.15 75 62 1.14
fe_ocean 273 263 1.01 340 322 1.00 263 263 1.02 263 263 1.02 263 263 1.02 263 263 1.02 263 263 1.02 263 263 1.02
fe_pwt 120 120 1.01 132 124 1.00 116 116 1.03 116 116 1.09 116 116 1.12 116 116 1.03 116 116 1.13 116 116 1.13
fe_rotor 453 441 1.04 576 514 1.05 441 439 1.07 441 439 1.08 441 439 1.07 441 439 1.08 442 439 1.08 442 439 1.08
fe_sphere 195 192 0.99 239 227 1.00 192 192 1.04 192 192 1.05 192 192 1.05 192 192 1.02 192 192 1.13 192 192 1.14
fe_tooth 882 867 1.16 1 192 1 094 1.00 882 869 1.13 849 837 1.19 848 826 1.19 885 882 1.11 852 827 1.19 853 839 1.19
finan512 50 50 1.07 67 51 1.02 50 50 1.01 50 50 1.13 50 50 1.13 50 50 1.01 50 50 1.12 50 50 1.13
G2_circuit 312 312 1.03 416 348 1.00 374 312 1.01 374 312 1.03 374 312 1.03 374 312 1.02 374 312 1.14 374 312 1.14
m14b 885 859 1.04 895 870 1.00 835 834 1.02 834 834 1.00 834 834 1.00 835 834 1.02 834 834 1.00 834 834 1.00
memplus 88 81 1.19 95 95 1.00 81 72 1.15 66 62 1.15 68 65 1.15 108 76 1.10 70 65 1.12 72 68 1.11
nlr 1 823 1 805 1.01 2 156 1 991 1.00 1 663 1 663 1.04 1 655 1 655 1.17 1 655 1 655 1.17 1 663 1 663 1.04 1 655 1 655 1.17 1 655 1 655 1.17
rgg23 3 395 3 327 1.02 3 466 3 298 1.00 2 475 2 471 1.09 2 473 2 470 1.14 2 473 2 470 1.14 2 475 2 471 1.09 2 473 2 470 1.14 2 473 2 470 1.14
rgg24 5 020 4 850 1.02 5 073 4 961 1.00 3 648 3 636 1.13 3 644 3 636 1.14 3 644 3 636 1.14 3 648 3 636 1.13 3 644 3 636 1.14 3 644 3 636 1.14
shipsec5 1 222 1 191 1.05 2 031 1 887 1.00 1 199 1 191 1.02 1 185 1 185 1.16 1 185 1 185 1.16 1 202 1 191 1.00 1 185 1 185 1.16 1 185 1 185 1.16
t60k 58 56 1.09 97 87 1.00 56 56 1.10 56 56 1.10 56 56 1.10 56 56 1.10 56 56 1.10 56 56 1.10
thermal2 468 462 1.02 524 494 1.00 430 430 1.03 430 430 1.03 430 430 1.03 430 430 1.03 430 430 1.03 430 430 1.03
thermomech 132 129 1.03 153 136 1.00 126 126 1.06 126 126 1.07 126 126 1.07 126 126 1.06 126 126 1.07 126 126 1.07
uk 15 14 1.16 25 21 1.00 14 14 1.19 14 14 1.19 14 14 1.19 15 14 1.18 14 14 1.19 14 14 1.19
vibrobox 582 554 1.14 967 756 0.92 643 554 1.12 581 554 1.16 614 554 1.13 826 598 1.07 581 554 1.16 614 554 1.12
wave 2 254 2 204 1.02 2 451 2 329 1.00 2 168 2 122 1.07 2 114 2 079 1.15 2 101 2 077 1.16 2 174 2 112 1.06 2 121 2 080 1.15 2 101 2 079 1.17
whitaker3 64 63 1.02 70 67 1.00 63 63 0.99 62 62 1.19 62 62 1.19 63 63 1.00 62 62 1.19 62 62 1.19
wing 630 607 1.12 612 188 1.16 613 605 1.10 590 583 1.19 586 584 1.18 615 608 1.08 589 581 1.18 587 583 1.18
wing_nodal 389 383 1.17 381 167 1.23 386 378 1.16 375 374 1.20 375 374 1.19 407 406 1.06 375 374 1.19 375 374 1.19

Table 3. Detailed per instances results as average and best values for the size of separator and average balance.

Metis Scotch LSFlow0 LSFlow0.5 LSFlow1 Flow0 Flow0.5 Flow1

Graph tavg. tavg. tavg. tavg. tavg. tavg. tavg. tavg.

144 0.2 0.3 85.6 132.6 166.3 27.0 82.8 95.9
2cubes_sphere 0.1 0.2 67.5 106.4 124.8 21.5 62.6 82.9
3elt 0.1 0.1 1.2 1.3 1.5 1.0 1.2 1.3
4elt 0.1 0.1 2.1 2.9 3.5 1.6 2.6 3.1
598a 0.1 0.2 31.5 48.4 59.5 14.2 32.8 44.1
add20 0.1 0.1 6.1 5.8 5.0 5.4 5.3 4.4
add32 0.1 0.1 0.8 0.8 0.9 0.7 0.8 0.9
af_shell9 0.6 1.3 140.1 278.6 343.8 103.6 237.9 339.6
auto 0.6 1.0 146.0 468.7 603.9 65.3 386.2 450.1
bcsstk29 0.1 0.4 8.1 9.4 10.2 5.4 7.0 7.9
bcsstk30 0.1 1.2 26.7 38.6 42.9 11.8 23.1 29.2
bcsstk31 0.1 0.4 17.6 24.0 25.8 7.6 12.1 15.1
bcsstk32 0.1 0.9 21.0 35.2 39.7 9.6 24.0 32.5
bcsstk33 0.1 1.4 39.0 41.8 47.4 28.6 31.6 37.0
bmwcra_1 0.3 4.3 149.8 206.0 216.5 62.9 110.1 151.4
boneS01 0.3 7.1 222.1 245.7 258.1 55.7 75.0 96.8
brack2 0.1 0.1 10.1 15.1 20.2 5.5 11.1 15.4
cfd2 0.2 0.2 73.3 103.8 114.2 27.5 62.4 77.5
cont-300 0.1 0.1 12.8 25.9 41.3 7.8 23.0 33.0
cop20k_A 0.2 1.5 69.1 88.0 100.9 18.0 39.6 51.1
crack 0.1 0.1 2.0 3.1 3.6 1.6 2.8 3.2
cs4 0.1 0.1 5.6 8.4 9.4 4.3 7.5 8.3
cti 0.1 0.1 5.3 5.9 6.7 3.7 4.4 5.3
data 0.1 0.1 1.8 2.1 2.4 1.6 1.9 2.2
del23 7.9 3.6 1 154.2 4 114.6 6 362.4 1 306.3 4 077.3 6 159.8
del24 17.4 7.2 2 733.4 12 807.8 18 613.6 2 580.3 12 711.2 17 219.3
deu 4.8 1.3 337.6 860.1 1 032.3 275.7 906.4 1 086.2
Dubcova3 0.2 1.0 42.2 65.4 82.2 18.3 42.2 59.7
eur 24.0 5.3 2 117.7 8 213.9 8 748.8 2 135.6 8 921.6 9 323.0
fe_4elt2 0.1 0.1 1.4 1.6 1.9 1.2 1.5 1.8
fe_body 0.1 0.1 5.8 8.9 8.6 4.6 8.0 7.8
fe_ocean 0.1 0.2 12.3 23.4 34.9 7.9 20.1 33.4
fe_pwt 0.1 0.1 4.0 6.1 7.4 2.8 5.3 7.3
fe_rotor 0.1 0.3 27.2 39.2 47.3 9.9 22.6 33.7
fe_sphere 0.1 0.1 3.1 4.0 4.6 2.0 3.3 4.2
fe_tooth 0.1 0.2 41.0 68.9 74.7 14.4 45.7 60.1
finan512 0.1 0.1 7.1 9.8 12.8 5.2 8.5 12.1
G2_circuit 0.1 0.1 13.5 19.7 24.6 8.4 16.9 24.8
m14b 0.3 0.3 60.1 90.3 114.3 28.6 60.6 78.7
memplus 0.1 0.3 32.5 37.2 32.8 24.6 30.8 27.4
nlr 7.5 4.0 407.1 1 935.6 3 217.7 320.5 1 940.9 3 085.0
rgg23 9.7 4.2 2 088.1 6 434.3 7 651.5 2 239.4 7 493.0 8 127.6
rgg24 21.5 9.0 3 116.0 9 616.8 10 415.3 2 963.8 9 530.6 10 436.2
shipsec5 0.3 3.0 114.2 146.9 177.2 46.9 90.8 129.0
t60k 0.1 0.1 2.2 6.4 8.6 1.7 6.5 8.1
thermal2 0.9 0.5 68.3 320.5 638.1 61.8 326.0 622.4
thermomech 0.1 0.1 5.0 22.9 27.9 3.6 20.1 26.1
uk 0.1 0.1 0.9 1.1 1.3 0.8 1.0 1.2
vibrobox 0.1 0.8 44.7 47.9 48.0 21.5 25.3 25.3
wave 0.2 0.3 118.2 157.5 183.7 28.2 71.5 94.6
whitaker3 0.1 0.1 1.4 2.2 2.5 1.2 2.0 2.3
wing 0.1 0.1 14.5 25.7 29.6 8.2 19.8 23.9
wing_nodal 0.1 0.1 9.0 9.2 10.7 5.8 6.4 8.2

Table 4. Detailed per instances results as average running time.

14

	Advanced Multilevel Node Separator Algorithms

