Skip to main content

Advanced Multilevel Node Separator Algorithms

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9685))

Included in the following conference series:

Abstract

A node separator of a graph is a subset S of the nodes such that removing S and its incident edges divides the graph into two disconnected components of about equal size. In this work, we introduce novel algorithms to find small node separators in large graphs. With focus on solution quality, we introduce novel flow-based local search algorithms which are integrated in a multilevel framework. In addition, we transfer techniques successfully used in the graph partitioning field. This includes the usage of edge ratings tailored to our problem to guide the graph coarsening algorithm as well as highly localized local search and iterated multilevel cycles to improve solution quality even further. Experiments indicate that flow-based local search algorithms on its own in a multilevel framework are already highly competitive in terms of separator quality. Adding additional local search algorithms further improves solution quality. Our strongest configuration almost always outperforms competing systems while on average computing 10 % and 62 % smaller separators than Metis and Scotch, respectively.

This paper is a short version of the TR [31].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications (1993)

    Google Scholar 

  2. Bader, D., Kappes, A., Meyerhenke, H., Sanders, P., Schulz, C., Wagner, D.: Benchmarking for graph clustering and partitioning. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining. Springer, New York (2014)

    Google Scholar 

  3. Bhatt, S.N., Leighton, F.T.: A framework for solving vlsi graph layout problems. J. Comput. Syst. Sci. 28(2), 300–343 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bichot, C., Siarry, P. (eds.): Graph Partitioning. Wiley, New York (2011)

    MATH  Google Scholar 

  5. Bonsma, P.: Most balanced minimum cuts. Discrete Appl. Math. 158(4), 261–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. 42(3), 153–159 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering – Selected Topics, to app., arXiv:1311.3144 (2014)

  8. Davis, T.: The University of Florida Sparse Matrix Collection

    Google Scholar 

  9. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance multi-level routing. In: The Shortest Path Problem: Ninth DIMACS Implementation Challenge, vol. 74, pp. 73–92 (2009)

    Google Scholar 

  10. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282. Springer, Heidelberg (2014)

    Google Scholar 

  12. Drake, D., Hougardy, S.: A simple approximation algorithm for the weighted matching problem. Inf. Process. Lett. 85, 211–213 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fukuyama, J.: NP-completeness of the planar separator problems. J. Graph Algorithms Appl. 10(2), 317–328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. WH Freeman  & Co., San Francisco (2002)

    Google Scholar 

  15. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2), 345–363 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hager, W.W., Hungerford, J.T., Safro, I.: A multilevel bilinear programming algorithm for the vertex separator problem. Technical report (2014)

    Google Scholar 

  17. Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2016, pp. 90–102. SIAM (2016)

    Google Scholar 

  18. Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a scalable high quality graph partitioner. In: Proceedings of the 24th International Parallal and Distributed Processing Symposium, pp. 1–12 (2010)

    Google Scholar 

  19. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. LaSalle, D., Karypis, G.: Efficient nested dissection for multicore architectures. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 467–478. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  21. Leiserson, C.E.: Area-efficient graph layouts. In: 21st Symposium on Foundations of Computer Science, pp. 270–281. IEEE (1980)

    Google Scholar 

  22. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maue, J., Sanders, P.: Engineering algorithms for approximate weighted matching. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 242–255. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Osipov, V., Sanders, P.: n-Level graph partitioning. In: Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 278–289. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Pellegrini, F.: Scotch Home Page. http://www.labri.fr/pelegrin/scotch

  27. Picard, J.C., Queyranne, M.: On the structure of all minimum cuts in a network and applications. Math. Program. Stud. 13, 8–16 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–480. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  30. Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph partitioning. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  31. Sanders, P., Schulz, C.: Advanced Multilevel Node Separator Algorithms. Technical report. arXiv:1509.01190 (2016)

    Google Scholar 

  32. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance scientific simulations. In: Dongarra, J., et al. (eds.) CRPC Parallel Computing Handbook. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  33. C. Schulz. High Quality Graph Partititioning. Ph.D. thesis, Karlsruhe Institute of Technology (2013)

    Google Scholar 

  34. Schulz, F., Wagner, D., Zaroliagis, C.D.: Using multi-level graphs for timetable information in railway systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  35. Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multilevel optimisation approach to graph-partitioning. J. Global Optim. 29(2), 225–241 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Ann. Oper. Res. 131(1), 325–372 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schulz .

Editor information

Editors and Affiliations

A Benchmark Set A

A Benchmark Set A

Table 2. Basic properties of the instances used for evaluation.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sanders, P., Schulz, C. (2016). Advanced Multilevel Node Separator Algorithms. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38851-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38850-2

  • Online ISBN: 978-3-319-38851-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics