Abstract
Algorithms for computing driving directions on road networks often presume constant costs on each arc. In practice, the current traffic situation significantly influences the travel time. One can distinguish traffic congestion that can be predicted using historical traffic data, and congestion due to unpredictable events, e. g., accidents. We study the dynamic and time-dependent route planning problem, which takes both live traffic and long-term prediction into account. We propose a practical algorithm that, while robust to user preferences, is able to integrate global changes of the time-dependent metric faster than previous approaches and allows queries in the order of milliseconds.
Partially supported by EU grants 288094 (eCOMPASS) and 609026 (MOVE-SMART).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The Germany and Europe instances can be obtained easily for scientific purposes, see http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php.
References
Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. CoRR abs/1504.05140 (2015)
Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent travel times with contraction hierarchies. ACM J. Exp. Algorithmics 18(1.4), 1–43 (2013)
Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective functions. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 169–180. Springer, Heidelberg (2012)
Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contraction hierarchies. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 93–104. Springer, Heidelberg (2013)
Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In: SIGSPATIAL 2013, pp. 54–63. ACM Press (2013)
Cooke, K., Halsey, E.: The shortest route through a network with time-dependent internodal transit times. J. Math. Anal. Appl. 14(3), 493–498 (1966)
Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks with waiting policies. Networks 44(1), 41–46 (2004)
Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60–94 (2011)
Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning in road networks. Transport. Sci. (2015)
Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts. In: IPDPS 2011, pp. 1135–1146. IEEE Computer Society (2011)
Delling, D., Nannicini, G.: Core routing on dynamic time-dependent road networks. Informs J. Comput. 24(2), 187–201 (2012)
Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)
Delling, D., Wagner, D.: Time-dependent route planning. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009)
Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: A case for time-dependent shortest path computation in spatial networks. In: SIGSPATIAL 2010, pp. 474–477. ACM Press (2010)
Diamantopoulos, T., Kehagias, D., König, F., Tzovaras, D.: Investigating the effect of global metrics in travel time forecasting. In: ITSC 2013, pp. 412–417. IEEE (2013)
Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282. Springer, Heidelberg (2014)
Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. J. Exp. Algorithmics. 21(1), 1.5:1–1.5:49 (2016). doi:10.1145/2886843
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3), 395–412 (1969)
Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: IWCTS 2013, pp. 25:25–25:30. ACM Press (2013)
Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. a unified framework for all shortest-path query variants on road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 298–311. Springer, Heidelberg (2015)
Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an algorithmic lens. In: SIGSPATIAL 2008, pp. 16:1–16:10. ACM Press (2008)
Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent shortest paths. Algorithmica 68(4), 1075–1097 (2014)
Geisberger, R., Sanders, P.: Engineering time-dependent many-to-many shortest paths computation. In: ATMOS 2010, pp. 74–87. OASIcs (2010)
Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)
Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms optimized for road networks. In: ALENEX 2004, pp. 100–111. SIAM (2004)
Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: ALENEX 2016, pp. 90–102. SIAM (2016)
Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for shortest-path queries. ACM J. Exp. Algorithmics 13(2.5), 1–26 (2008)
Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear function. J. Inf. Process. 9(3), 159–162 (1986)
Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)
Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wagner, D., Zaroliagis, C.: Analysis and experimental evaluation of time-dependent distance oracles. In: ALENEX 2015, pp. 147–158. SIAM (2015)
Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wagner, D., Zaroliagis, C.: Engineering oracles for time-dependent road networks. In: ALENEX 2016, pp. 1–14. SIAM (2016)
Kontogiannis, S., Wagner, D., Zaroliagis, C.: Hierarchical Oracles for Time-Dependent Networks. CoRR abs/1502.05222 (2015)
Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 713–725. Springer, Heidelberg (2014)
Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks. Algorithmica 74(4), 1404–1434 (2015)
Maervoet, J., Causmaecker, P.D., Berghe, G.V.: Fast approximation of reach hierarchies in networks. In: SIGSPATIAL 2014, pp. 441–444. ACM Press (2014)
Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* search on time-dependent road networks. Networks 59, 240–251 (2012)
Orda, A., Rom, R.: Shortest-path and minimum delay algorithms in networks with time-dependent edge-length. J. ACM 37(3), 607–625 (1990)
Pfoser, D., Brakatsoulas, S., Brosch, P., Umlauft, M., Tryfona, N., Tsironis, G.: Dynamic travel time provision for road networks. In: SIGSPATIAL 2008, pp. 68:1–68:4. ACM Press (2008)
Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: ALENEX 2012, pp. 16–29. SIAM (2012)
Schild, A., Sommer, C.: On balanced separators in road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 286–297. Springer, Heidelberg (2015)
Sherali, H.D., Ozbay, K., Subramanian, S.: The time-dependent shortest pair of disjoint paths problem: complexity, models, and algorithms. Networks 31(4), 259–272 (1998)
Acknowledgements
We thank Gernot Veit Batz, Daniel Delling, Moritz Kobitzsch, Felix König, Spyros Kontogiannis, and Ben Strasser for interesting conversations.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Baum, M., Dibbelt, J., Pajor, T., Wagner, D. (2016). Dynamic Time-Dependent Route Planning in Road Networks with User Preferences. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-38851-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-38850-2
Online ISBN: 978-3-319-38851-9
eBook Packages: Computer ScienceComputer Science (R0)