Skip to main content

Dynamic Time-Dependent Route Planning in Road Networks with User Preferences

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9685))

Included in the following conference series:

  • 1557 Accesses

Abstract

Algorithms for computing driving directions on road networks often presume constant costs on each arc. In practice, the current traffic situation significantly influences the travel time. One can distinguish traffic congestion that can be predicted using historical traffic data, and congestion due to unpredictable events, e. g., accidents. We study the dynamic and time-dependent route planning problem, which takes both live traffic and long-term prediction into account. We propose a practical algorithm that, while robust to user preferences, is able to integrate global changes of the time-dependent metric faster than previous approaches and allows queries in the order of milliseconds.

Partially supported by EU grants 288094 (eCOMPASS) and 609026 (MOVE-SMART).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Germany and Europe instances can be obtained easily for scientific purposes, see http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php.

References

  1. Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. CoRR abs/1504.05140 (2015)

    Google Scholar 

  2. Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent travel times with contraction hierarchies. ACM J. Exp. Algorithmics 18(1.4), 1–43 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective functions. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 169–180. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contraction hierarchies. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 93–104. Springer, Heidelberg (2013)

    Google Scholar 

  5. Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In: SIGSPATIAL 2013, pp. 54–63. ACM Press (2013)

    Google Scholar 

  6. Cooke, K., Halsey, E.: The shortest route through a network with time-dependent internodal transit times. J. Math. Anal. Appl. 14(3), 493–498 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks with waiting policies. Networks 44(1), 41–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60–94 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning in road networks. Transport. Sci. (2015)

    Google Scholar 

  10. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts. In: IPDPS 2011, pp. 1135–1146. IEEE Computer Society (2011)

    Google Scholar 

  11. Delling, D., Nannicini, G.: Core routing on dynamic time-dependent road networks. Informs J. Comput. 24(2), 187–201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Delling, D., Wagner, D.: Time-dependent route planning. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: A case for time-dependent shortest path computation in spatial networks. In: SIGSPATIAL 2010, pp. 474–477. ACM Press (2010)

    Google Scholar 

  15. Diamantopoulos, T., Kehagias, D., König, F., Tzovaras, D.: Investigating the effect of global metrics in travel time forecasting. In: ITSC 2013, pp. 412–417. IEEE (2013)

    Google Scholar 

  16. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282. Springer, Heidelberg (2014)

    Google Scholar 

  17. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. J. Exp. Algorithmics. 21(1), 1.5:1–1.5:49 (2016). doi:10.1145/2886843

    Article  Google Scholar 

  18. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3), 395–412 (1969)

    Article  MATH  Google Scholar 

  20. Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: IWCTS 2013, pp. 25:25–25:30. ACM Press (2013)

    Google Scholar 

  21. Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. a unified framework for all shortest-path query variants on road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 298–311. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  22. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an algorithmic lens. In: SIGSPATIAL 2008, pp. 16:1–16:10. ACM Press (2008)

    Google Scholar 

  23. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent shortest paths. Algorithmica 68(4), 1075–1097 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Geisberger, R., Sanders, P.: Engineering time-dependent many-to-many shortest paths computation. In: ATMOS 2010, pp. 74–87. OASIcs (2010)

    Google Scholar 

  25. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

    Article  Google Scholar 

  26. Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms optimized for road networks. In: ALENEX 2004, pp. 100–111. SIAM (2004)

    Google Scholar 

  27. Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: ALENEX 2016, pp. 90–102. SIAM (2016)

    Google Scholar 

  28. Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for shortest-path queries. ACM J. Exp. Algorithmics 13(2.5), 1–26 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear function. J. Inf. Process. 9(3), 159–162 (1986)

    MathSciNet  MATH  Google Scholar 

  30. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)

    Article  Google Scholar 

  31. Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wagner, D., Zaroliagis, C.: Analysis and experimental evaluation of time-dependent distance oracles. In: ALENEX 2015, pp. 147–158. SIAM (2015)

    Google Scholar 

  32. Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wagner, D., Zaroliagis, C.: Engineering oracles for time-dependent road networks. In: ALENEX 2016, pp. 1–14. SIAM (2016)

    Google Scholar 

  33. Kontogiannis, S., Wagner, D., Zaroliagis, C.: Hierarchical Oracles for Time-Dependent Networks. CoRR abs/1502.05222 (2015)

    Google Scholar 

  34. Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 713–725. Springer, Heidelberg (2014)

    Google Scholar 

  35. Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks. Algorithmica 74(4), 1404–1434 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maervoet, J., Causmaecker, P.D., Berghe, G.V.: Fast approximation of reach hierarchies in networks. In: SIGSPATIAL 2014, pp. 441–444. ACM Press (2014)

    Google Scholar 

  37. Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* search on time-dependent road networks. Networks 59, 240–251 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Orda, A., Rom, R.: Shortest-path and minimum delay algorithms in networks with time-dependent edge-length. J. ACM 37(3), 607–625 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pfoser, D., Brakatsoulas, S., Brosch, P., Umlauft, M., Tryfona, N., Tsironis, G.: Dynamic travel time provision for road networks. In: SIGSPATIAL 2008, pp. 68:1–68:4. ACM Press (2008)

    Google Scholar 

  40. Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: ALENEX 2012, pp. 16–29. SIAM (2012)

    Google Scholar 

  41. Schild, A., Sommer, C.: On balanced separators in road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 286–297. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  42. Sherali, H.D., Ozbay, K., Subramanian, S.: The time-dependent shortest pair of disjoint paths problem: complexity, models, and algorithms. Networks 31(4), 259–272 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Gernot Veit Batz, Daniel Delling, Moritz Kobitzsch, Felix König, Spyros Kontogiannis, and Ben Strasser for interesting conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Dibbelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Baum, M., Dibbelt, J., Pajor, T., Wagner, D. (2016). Dynamic Time-Dependent Route Planning in Road Networks with User Preferences. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38851-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38850-2

  • Online ISBN: 978-3-319-38851-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics