Skip to main content

Compact Flow Diagrams for State Sequences

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9685))

Included in the following conference series:

Abstract

We introduce the concept of compactly representing a large number of state sequences, e.g., sequences of activities, as a flow diagram. We argue that the flow diagram representation gives an intuitive summary that allows the user to detect patterns among large sets of state sequences. Simplified, our aim is to generate a small flow diagram that models the flow of states of all the state sequences given as input. For a small number of state sequences we present efficient algorithms to compute a minimal flow diagram. For a large number of state sequences we show that it is unlikely that efficient algorithms exist. More specifically, the problem is W[1]-hard if the number of state sequences is taken as a parameter. We thus introduce several heuristics for this problem. We argue about the usefulness of the flow diagram by applying the algorithms to two problems in sports analysis. We evaluate the performance of our algorithms on a football data set and generated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alewijnse, S.P.A., Buchin, K., Buchin, M., Kölzsch, A., Kruckenberg, H., Westenberg, M.: A framework for trajectory segmentation by stable criteria. In: Proceedings of 22nd ACM SIGSPATIAL/GIS, pp. 351–360. ACM (2014)

    Google Scholar 

  2. Aronov, B., Driemel, A., van Kreveld, M.J., Löffler, M., Staals, F.: Segmentation of trajectories for non-monotone criteria. In: Proceedings of 24th ACM-SIAM SODA, pp. 1897–1911 (2013)

    Google Scholar 

  3. Bialkowski, A., Lucey, P., Carr, G.P.K., Yue, Y., Sridharan, S., Matthews, I.: Identifying team style in soccer using formations learned from spatiotemporal tracking data. In: ICDM Workshops, pp. 9–14. IEEE (2014)

    Google Scholar 

  4. Bialkowski, A., Lucey, P., Carr, P., Yue, Y., Matthews, I.: Win at home and draw away: automatic formation analysis highlighting the differences in home and away team behaviors. In: Proceedings of 8th Annual MIT Sloan Sports Analytics Conference (2014)

    Google Scholar 

  5. Buchin, K., Buchin, M., Gudmundsson, J., Horton, M., Sijben, S.: Compact flow diagrams for state sequences. CoRR, abs/1602.05622 (2016)

    Google Scholar 

  6. Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting commuting patterns by clustering subtrajectories. Int. J. Comput. Geom. Appl. 21(3), 253–282 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buchin, K., Buchin, M., van Kreveld, M., Speckmann, B., Staals, F.: Trajectory grouping structure. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 219–230. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Buchin, M., Driemel, A., van Kreveld, M., Sacristan, V.: Segmenting trajectories: a framework and algorithms using spatiotemporal criteria. J. spat. inf. sci. 3, 33–63 (2011)

    Google Scholar 

  9. Buchin, M., Kruckenberg, H., Kölzsch, A.: Segmenting trajectories based on movement states. In: Proceedings of 15th SDH, pp. 15–25. Springer (2012)

    Google Scholar 

  10. Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error bounds. VLDB J. 15(3), 211–228 (2006)

    Article  Google Scholar 

  11. Gudmundsson, J., Wolle, T.: Football analysis using spatio-temporal tools. Comput. Environ. Urban Syst. 47, 16–27 (2014)

    Article  Google Scholar 

  12. Han, C.-S., Jia, S.-X., Zhang, L., Shu, C.-C.: Sub-trajectory clustering algorithm based on speed restriction. Comput. Eng. 37(7), 219–221 (2011)

    Google Scholar 

  13. Kim, H.-C., Kwon, O., Li, K.-J.: Spatial and spatiotemporal analysis of soccer. In: Proceedings of 19th ACM SIGSPATIAL/GIS, pp. 385–388. ACM (2011)

    Google Scholar 

  14. Lucey, P., Bialkowski, A., Carr, G.P.K., Morgan, S., Matthews, I., Sheikh, Y.: Representing and discovering adversarial team behaviors using player roles. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013), Portland, pp. 2706–2713. IEEE, June 2013

    Google Scholar 

  15. Prozone Sports Ltd: Prozone Sports - Our technology (2015). http://prozonesports.stats.com/about/technology/

  16. Van Haaren, J., Dzyuba, V., Hannosset, S., Davis, J.: Automatically discovering offensive patterns in soccer match data. In: Fromont, E., De Bie, T., van Leeuwen, M. (eds.) IDA 2015. LNCS, vol. 9385, pp. 286–297. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24465-5_25

    Chapter  Google Scholar 

  17. Wang, Q., Zhu, H., Hu, W., Shen, Z., Yao, Y.: Discerning tactical patterns for professional soccer teams. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2015, Sydney, pp. 2197–2206. ACM Press, August 2015

    Google Scholar 

  18. Wei, X., Sha, L., Lucey, P., Morgan, S., Sridharan, S.: Large-scale analysis of formations in soccer. In: 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Hobart, pp. 1–8. IEEE, November 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Buchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Buchin, K., Buchin, M., Gudmundsson, J., Horton, M., Sijben, S. (2016). Compact Flow Diagrams for State Sequences. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38851-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38850-2

  • Online ISBN: 978-3-319-38851-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics