Abstract
In the area of process mining, conformance checking aims to find an optimal alignment between an event log (which captures the activities that actually have happened) and a Petri net (which describes expected or normative behavior). Optimal alignments highlight discrepancies between observed and modeled behavior. To find an optimal alignment, a potentially challenging optimization problem needs to be solved based on a predefined cost function for misalignments. Unfortunately, this may be very time consuming for larger logs and models and often intractable. A solution is to decompose the problem of finding an optimal alignment in many smaller problems that are easier to solve. Decomposition can be used to detect conformance problems in less time and provides a lower bound for the costs of an optimal alignment. Although the existing approach is able to decide whether a trace fits or not, it does not provide an overall alignment. In this paper, we provide an algorithm that is able to provide such an optimal alignment from the decomposed alignments if this is possible. Otherwise, the algorithm produces a so-called pseudo-alignment that can still be used to pinpoint non-conforming parts of log and model. The approach has been implemented in ProM and tested on various real-life event logs.
Similar content being viewed by others
Notes
- 1.
All tests are performed on a desktop computer with an Intel Core-i7-4770 CPU at 3.40 GHz, 16 GB of RAM, running Windows 7 Enterprise (64-bit), and using a 64-bit version of Java 7 where 4 GB of RAM was allocated to the Java VM.
- 2.
References
van der Aalst, W.M.P.: Decomposing Petri Nets for process mining: a generic approach. Distrib. Parallel Databases 31(4), 471–507 (2013). http://dx.doi.org/10.1007/s10619-013-7127-5
van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, 1st edn. Springer, Heidelberg (2011)
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012). http://dx.doi.org/10.1002/widm.1045
Adriansyah, A., van Dongen, B.F, van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: Proceedings of the 2011 IEEE 15th International Enterprise Distributed Object Computing Conference, EDOC 2011, pp. 55–64. IEEE Computer Society, Washington, DC (2011). http://dx.doi.org/10.1109/EDOC.2011.12
Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based fitness in conformance checking. In: 2011 11th International Conference on Application of Concurrency to System Design (ACSD), pp. 57–66, June 2011
Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Advances in Petri Nets 1986, Part I. LNCS, vol. 254, pp. 360–376. Springer, Heidelberg (1987)
vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Determining process model precision and generalization with weighted artificial negative events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)
Calders, T., Günther, C.W., Pechenizkiy, M., Rozinat, A.: Using minimum description length for process mining. In: Proceedings of the 2009 ACM Symposium on Applied Computing, SAC 2009, pp. 1451–1455. ACM, New York (2009). http://doi.acm.org/10.1145/1529282.1529606
Cook, J.E., Wolf, A.L.: Software process validation: quantitatively measuring the correspondence of a process to a model. ACM Trans. Softw. Eng. Methodol. 8(2), 147–176 (1999). http://doi.acm.org/10.1145/304399.304401
De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A robust f-measure for evaluating discovered process models. In: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 148–155, April 2011
Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009). http://dl.acm.org/citation.cfm?id=1577069.1577113
Maruster, L., Weijters, A.J.M.M., van der Aalst, W.M.P., Van Den Bosch, A.: A rule-based approach for process discovery: dealing with noise and imbalance in process logs. Data Min. Knowl. Disc. 13(1), 67–87 (2006). http://dx.doi.org/10.1007/s10618-005-0029-z
Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-15618-2_16
Muñoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Conformance checking in the large: partitioning and Topology. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 130–145. Springer, Heidelberg (2013)
Muñoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit decomposed conformance checking. Inf. Syst. 46, 102–122 (2014). http://dx.doi.org/10.1016/j.is.2014.04.003
Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)
Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008). http://www.sciencedirect.com/science/article/pii/S030643790700049X
Verbeek, H.M.W.: Decomposed process mining with divide-and-conquer. In: BPM 2014 Demos, vol. 1295, pp. 86–90. CEUR-WS.org (2014). http://ceur-ws.org/Vol-1295/paper11.pdf
Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P: ProM 6: the process mining toolkit. In: Proceedings of BPM Demonstration Track 2010, vol. 615, pp. 34–39. CEUR-WS.org (2010). http://ceur-ws.org/Vol-615/paper13.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Verbeek, H.M.W., van der Aalst, W.M.P. (2016). Merging Alignments for Decomposed Replay. In: Kordon, F., Moldt, D. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2016. Lecture Notes in Computer Science(), vol 9698. Springer, Cham. https://doi.org/10.1007/978-3-319-39086-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-39086-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39085-7
Online ISBN: 978-3-319-39086-4
eBook Packages: Computer ScienceComputer Science (R0)