Skip to main content

A Study of IP Router Queues with the Use of Markov Models

  • Conference paper
  • First Online:
Computer Networks (CN 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 608))

Included in the following conference series:

Abstract

We investigate the use of Markov chains in modeling the queues inside IP routers. The model takes into account the measured size of packets, i.e. collected histogram is represented by a linear combination of exponentially distributed phases. We discuss also the impact of the distribution of IP packets size on the loss probability resulting from the limited size of a router memory buffer. The model considers a self similar traffic generated by on-off sources. A special interest is paid to the duration of a queue transient state following the changes of traffic intensity as a function of traffic Hurst parameter and of the utilization of the link. Our goal is to see how far, taking into account the known constraints of Markov models (state explosion) we are able to refine the queueing model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reinecke, P., Krauß, T., Wolter, K.: HyperStar: phase-type fitting made easy. In: 9th International Conference on the Quantitative Evaluation of Systems (QEST 2012), pp. 201–202 (September 2012)

    Google Scholar 

  2. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). http://www.prismmodelchecker.org/

    Chapter  Google Scholar 

  3. Chydziński, A.: Nowe modele kolejkowe dla węzłów sieci pakietowych. Pracownia Komputerowa Jacka Skalmierskiego, Gliwice (2013)

    Google Scholar 

  4. Tikhonenko, O., Kawecka, M.: Total volume distribution for multiserver queueing systems with random capacity demands. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 394–405. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Czachórski, T., Nycz, T., Pekergin, F.: Queue with limited volume, a diffusion approximation approach. In: Gelenbe, E., Lent, R., Sakellari, G., Sacan, A., Toroslu, H., Yazici, A. (eds.) Computer and Information Sciences. Lecture Notes in Electrical Engineering, vol. 62, pp. 71–74. Springer, Netherlands (2010)

    Chapter  Google Scholar 

  6. https://data.caida.org/datasets/passive-2008/equinix-chicago/20080319/

  7. Buchholz, P., Kriege, J., Felko, I.: Input Modeling with Phase-Type Distributions and Markov Models: Theory and Applications. SpringerBriefs in Mathematics. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  8. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distribution via the EM algorithm. Scand. J. Stat. 23, 419–441 (1996)

    MATH  Google Scholar 

  9. Horváth, A., Telek, M.: PhFit: a general phase-type fitting tool. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, p. 82. Springer, Heidelberg (2002)

    Google Scholar 

  10. Riska, A., Diev, V., Smirni, E.: Efficient fitting of longtailed data sets into phase-type distributions. In: SIGMETRICS Performance Evaluation Review, vol. 30, pp. 6–8, December 2002. http://doi.acm.org/10.1145/605521.605525

    Google Scholar 

  11. Pérez, J.F., Riaño, G.: jPhase: an object-oriented tool for modeling phase-type distributions. In: Proceeding From the 2006 Workshop on Tools for Solving Structured Markov Chains, ser. (SMCtools 2006), New York, NY, USA. ACM (2006)

    Google Scholar 

  12. Thümmler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting with the EM algorithm. IEEE Trans. Dependable Secur. Comput. 3(3), 245–258 (2006)

    Article  Google Scholar 

  13. Casale, G., Zhang, E.Z., Smirni, E.: KPC-toolbox: Simple yet effective trace fitting using markovian arrival processes. In: Proceedings of the 2008 Fifth International Conference on Quantitative Evaluation of Systems, pp. 83–92. Computer Society, IEEE, Washington, DC (2008)

    Google Scholar 

  14. Wang, J., Liu, J., She, C.: Segment-based adaptive hyper-erlang model forlong-tailed network traffic approximation. J. Supercomput. 45, 296–312 (2008)

    Article  Google Scholar 

  15. Sadre, R., Haverkort, B.: Fitting heavy-tailed HTTP traces with the new stratified EM-algorithm. In: 4th International Telecommunication Networking Workshop on QoS in Multiservice IP Networks (IT-NEWS), pp. 254–261. IEEE Computer Society Press, Los Alamitos, February 2008

    Google Scholar 

  16. Bause, F., Buchholz, P., Kriege, J.: ProFiDo - the processes fitting toolkit dortmund. In: Proceedings of the 7th International Conference on Quantitative Evaluation of Systems (QEST 2010), pp. 87–96. IEEE Computer Society (2010)

    Google Scholar 

  17. Loiseau, P., Gonçalves, P., Dewaele, G., Borgnat, P., Abry, P., Primet, P.V.-B.: Investigating self-similarity and heavy-tailed distributions on a large-scale experimental facility. IEEE/ACM Trans. Netw. 18(4), 1261–1274 (2010)

    Article  Google Scholar 

  18. Bhattacharjee, A., Nandi, S.: Statistical analysis of network traffic inter-arrival. In: 12th International Conference on Advanced Communication Technology, USA, pp. 1052–1057 (2010)

    Google Scholar 

  19. Kim, Y.G., Min, P.S.: On the prediction of average queueing delay with self-similar traffic. In: Proceedings of the IEEE Globecom 2003, vol. 5, pp. 2987–2991 (2003)

    Google Scholar 

  20. Gorrasi, A., Restino, R.: Experimental comparison of some scheduling disciplines fed by self-similar traffic. In: Proceedings of the IEEE International Conference on Communication, vol. 1, pp. 163–167 (2003)

    Google Scholar 

  21. Muscariello, L., Mellia, M., Meo, M., Marsan, M.A., Cigni, R.L.: Markov models of internet traffic and a new hierarchical MMPP model. Comput. Commun. 28, 1835–1851 (2005)

    Article  Google Scholar 

  22. Clegg, R.G.: Markov-modulated on/off processes for long-range dependent internet traffic. Computing Research Repository, CoRR (2006)

    Google Scholar 

  23. Grossglauser, M., Bolot, J.C.: On the relevance of long-range dependence in network traffic. IEEE/ACM Trans. Netw. 7(5), 629–640 (1999)

    Article  Google Scholar 

  24. Nogueira, A., Valadas, R.: Analyzing the relevant time scales in a network of queues. In: SPIE Proceedings, vol. 4523 (2001)

    Google Scholar 

  25. Andersen, A.T., Nielsen, B.F.: A markovian approach for modeling packet traffic with long-range dependence. IEEE J. Sel. Areas in Commun. 16(5), 719–732 (1998)

    Article  Google Scholar 

  26. Domańska, J., Domański, A., Czachórski, T.: Modeling packet traffic with the use of superpositions of two-state MMPPs. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2014. CCIS, vol. 431, pp. 24–36. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  27. Fischer, W., Meier-Hellstern, K.: The markov-modulated poisson process (MMPP) cookbook. Perform. Eval. 18(2), 149–171 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. PEPS. www-id.imag.fr/Logiciels/peps/userguide.html

  29. Potier, D.: New User’s Introduction to QNAP2. Rapport Technique no. 40, INRIA, Rocquencourt (1984)

    Google Scholar 

  30. Czachórski, T.: A method to solve diffusion equation with instantaneous return processes acting as boundary conditions. Bull. Pol. Acad. Sci. Tech. Sci. 41(4), 417–451 (1993)

    MATH  Google Scholar 

  31. Nycz, M., Nycz, T., Czachórski, T.: Modelling dynamics of TCP flows in very large network topologies. In: Abdelrahman, O.H., Gelenbe, E., Gorbil, G., Lent, R. (eds.) Information Sciences and Systems 2015. Lecture Notes in Electrical Engineering, vol. 363, pp. 251–259. Springer, Switzerland (2016)

    Chapter  Google Scholar 

  32. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801–836 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix twenty-five years later. SIAM Rev. 45(1), 30–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Chichester (1994)

    MATH  Google Scholar 

  35. Pecka, P., Deorowicz, S., Nowak, M.: Efficient representation of transition matrix in the markov process modeling of computer networks. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 457–464. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Czachórski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Czachórski, T., Domański, A., Domańska, J., Rataj, A. (2016). A Study of IP Router Queues with the Use of Markov Models. In: Gaj, P., Kwiecień, A., Stera, P. (eds) Computer Networks. CN 2016. Communications in Computer and Information Science, vol 608. Springer, Cham. https://doi.org/10.1007/978-3-319-39207-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39207-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39206-6

  • Online ISBN: 978-3-319-39207-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics