Abstract
We investigate the use of Markov chains in modeling the queues inside IP routers. The model takes into account the measured size of packets, i.e. collected histogram is represented by a linear combination of exponentially distributed phases. We discuss also the impact of the distribution of IP packets size on the loss probability resulting from the limited size of a router memory buffer. The model considers a self similar traffic generated by on-off sources. A special interest is paid to the duration of a queue transient state following the changes of traffic intensity as a function of traffic Hurst parameter and of the utilization of the link. Our goal is to see how far, taking into account the known constraints of Markov models (state explosion) we are able to refine the queueing model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Reinecke, P., Krauß, T., Wolter, K.: HyperStar: phase-type fitting made easy. In: 9th International Conference on the Quantitative Evaluation of Systems (QEST 2012), pp. 201–202 (September 2012)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). http://www.prismmodelchecker.org/
Chydziński, A.: Nowe modele kolejkowe dla węzłów sieci pakietowych. Pracownia Komputerowa Jacka Skalmierskiego, Gliwice (2013)
Tikhonenko, O., Kawecka, M.: Total volume distribution for multiserver queueing systems with random capacity demands. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 394–405. Springer, Heidelberg (2013)
Czachórski, T., Nycz, T., Pekergin, F.: Queue with limited volume, a diffusion approximation approach. In: Gelenbe, E., Lent, R., Sakellari, G., Sacan, A., Toroslu, H., Yazici, A. (eds.) Computer and Information Sciences. Lecture Notes in Electrical Engineering, vol. 62, pp. 71–74. Springer, Netherlands (2010)
https://data.caida.org/datasets/passive-2008/equinix-chicago/20080319/
Buchholz, P., Kriege, J., Felko, I.: Input Modeling with Phase-Type Distributions and Markov Models: Theory and Applications. SpringerBriefs in Mathematics. Springer, Heidelberg (2014)
Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distribution via the EM algorithm. Scand. J. Stat. 23, 419–441 (1996)
Horváth, A., Telek, M.: PhFit: a general phase-type fitting tool. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, p. 82. Springer, Heidelberg (2002)
Riska, A., Diev, V., Smirni, E.: Efficient fitting of longtailed data sets into phase-type distributions. In: SIGMETRICS Performance Evaluation Review, vol. 30, pp. 6–8, December 2002. http://doi.acm.org/10.1145/605521.605525
Pérez, J.F., Riaño, G.: jPhase: an object-oriented tool for modeling phase-type distributions. In: Proceeding From the 2006 Workshop on Tools for Solving Structured Markov Chains, ser. (SMCtools 2006), New York, NY, USA. ACM (2006)
Thümmler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting with the EM algorithm. IEEE Trans. Dependable Secur. Comput. 3(3), 245–258 (2006)
Casale, G., Zhang, E.Z., Smirni, E.: KPC-toolbox: Simple yet effective trace fitting using markovian arrival processes. In: Proceedings of the 2008 Fifth International Conference on Quantitative Evaluation of Systems, pp. 83–92. Computer Society, IEEE, Washington, DC (2008)
Wang, J., Liu, J., She, C.: Segment-based adaptive hyper-erlang model forlong-tailed network traffic approximation. J. Supercomput. 45, 296–312 (2008)
Sadre, R., Haverkort, B.: Fitting heavy-tailed HTTP traces with the new stratified EM-algorithm. In: 4th International Telecommunication Networking Workshop on QoS in Multiservice IP Networks (IT-NEWS), pp. 254–261. IEEE Computer Society Press, Los Alamitos, February 2008
Bause, F., Buchholz, P., Kriege, J.: ProFiDo - the processes fitting toolkit dortmund. In: Proceedings of the 7th International Conference on Quantitative Evaluation of Systems (QEST 2010), pp. 87–96. IEEE Computer Society (2010)
Loiseau, P., Gonçalves, P., Dewaele, G., Borgnat, P., Abry, P., Primet, P.V.-B.: Investigating self-similarity and heavy-tailed distributions on a large-scale experimental facility. IEEE/ACM Trans. Netw. 18(4), 1261–1274 (2010)
Bhattacharjee, A., Nandi, S.: Statistical analysis of network traffic inter-arrival. In: 12th International Conference on Advanced Communication Technology, USA, pp. 1052–1057 (2010)
Kim, Y.G., Min, P.S.: On the prediction of average queueing delay with self-similar traffic. In: Proceedings of the IEEE Globecom 2003, vol. 5, pp. 2987–2991 (2003)
Gorrasi, A., Restino, R.: Experimental comparison of some scheduling disciplines fed by self-similar traffic. In: Proceedings of the IEEE International Conference on Communication, vol. 1, pp. 163–167 (2003)
Muscariello, L., Mellia, M., Meo, M., Marsan, M.A., Cigni, R.L.: Markov models of internet traffic and a new hierarchical MMPP model. Comput. Commun. 28, 1835–1851 (2005)
Clegg, R.G.: Markov-modulated on/off processes for long-range dependent internet traffic. Computing Research Repository, CoRR (2006)
Grossglauser, M., Bolot, J.C.: On the relevance of long-range dependence in network traffic. IEEE/ACM Trans. Netw. 7(5), 629–640 (1999)
Nogueira, A., Valadas, R.: Analyzing the relevant time scales in a network of queues. In: SPIE Proceedings, vol. 4523 (2001)
Andersen, A.T., Nielsen, B.F.: A markovian approach for modeling packet traffic with long-range dependence. IEEE J. Sel. Areas in Commun. 16(5), 719–732 (1998)
Domańska, J., Domański, A., Czachórski, T.: Modeling packet traffic with the use of superpositions of two-state MMPPs. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2014. CCIS, vol. 431, pp. 24–36. Springer, Heidelberg (2014)
Fischer, W., Meier-Hellstern, K.: The markov-modulated poisson process (MMPP) cookbook. Perform. Eval. 18(2), 149–171 (1993)
Potier, D.: New User’s Introduction to QNAP2. Rapport Technique no. 40, INRIA, Rocquencourt (1984)
Czachórski, T.: A method to solve diffusion equation with instantaneous return processes acting as boundary conditions. Bull. Pol. Acad. Sci. Tech. Sci. 41(4), 417–451 (1993)
Nycz, M., Nycz, T., Czachórski, T.: Modelling dynamics of TCP flows in very large network topologies. In: Abdelrahman, O.H., Gelenbe, E., Gorbil, G., Lent, R. (eds.) Information Sciences and Systems 2015. Lecture Notes in Electrical Engineering, vol. 363, pp. 251–259. Springer, Switzerland (2016)
Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801–836 (1978)
Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix twenty-five years later. SIAM Rev. 45(1), 30–49 (2003)
Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Chichester (1994)
Pecka, P., Deorowicz, S., Nowak, M.: Efficient representation of transition matrix in the markov process modeling of computer networks. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 457–464. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Czachórski, T., Domański, A., Domańska, J., Rataj, A. (2016). A Study of IP Router Queues with the Use of Markov Models. In: Gaj, P., Kwiecień, A., Stera, P. (eds) Computer Networks. CN 2016. Communications in Computer and Information Science, vol 608. Springer, Cham. https://doi.org/10.1007/978-3-319-39207-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-39207-3_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39206-6
Online ISBN: 978-3-319-39207-3
eBook Packages: Computer ScienceComputer Science (R0)