Abstract
A novel nonparametric model is introduced to model and control emission densities of a non-ergodic hidden Markov model. Having both multiclass and one-class classifications simultaneously, for recognizing the best match between multiple classes and then accepting or rejecting the given input pattern, is the major characteristic of this algorithm. Also, since the proposed method creates independent feature spaces and trains by positive samples only, it allows the vocabulary of trained patterns to grow without any concern about growing into a negative set (which is a problem with algorithms that use negative/garbage sets for binary training).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge (1997)
Shamaie, A., Sutherland, A.: Bayesian fusion of hidden Markov models for understanding bimanual movements. In: Proceedings of 6th IEEE Conference on Automatic Face and Gesture Recognition (2004)
Gauvain, J., Lee, C.: Bayesian learning of Gaussian mixture densities for hidden Markov models. In: Proceedings of DARPA Speech Natural Language Workshop, February 1991
Ellis, D., Sommerlade, E., Reid, I.: Modelling pedestrian trajectory patterns with Gaussian processes. In: IEEE 12th International Conference on Computer Vision (2009)
Kim, K., Lee, D., Essa, I.: Gaussian process regression flow for analysis of motion trajectories. In: Proceedings of IEEE International Conference on Computer Vision (2011)
Wilpon, J.G., Rabiner, L.R., Lee, C., Goldman, E.R.: Automatic recognition of keywords in unconstrained speech using hidden Markov models. IEEE Trans. Acoust. Speech Signal Process. 38(11), 1870–1878 (1990)
Teh, Y.W., Jordan, M., Beal, M., Blei, D.: Hierarchical Dirichlet process, J. Am. Stat. Assoc. 101(47) (2006)
Teh, Y.W.: Bayesian Nonparametrics: Dirichlet Process. Machine Learning Summer School Tutorials, Cambridge (2009)
Fox, E., Sudderth, E., Jordan, M., Willsky, A.: An HDP-HMM for systems with state-persistence. In: International Conference on Machine Learning, July 2008
Sudderth, E.: Graphical Models for Visual Object Recognition and Tracking. Ph.D. Dissertation, Massachusetts Institute of Technology, May 2006
Pitman, J., Yor, M.: The two parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25(2), 855–900 (1997)
Ishwaran, H., James, L.F.: Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 96(453), 161–173 (2001)
Sawyer, S.: Wishart Distributions and Inverse-Wishart Sampling. Washington University, St. Louis (2007)
Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat. 9(2), 249–265 (2000)
Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis, 3rd edn. CRC Press, London (2014)
Rasmussen, C.E.: The infinite Gaussian mixture model. In: Advances in Neural Information Processing Systems (2000)
Görür, D., Rasmussen, C.E.: Dirichlet process Gaussian mixture models: choice of the base distribution. J. Comput. Sci. Technol. 25(2), 653–664 (2010)
Fox, E., Dunson, D.: Bayesian Nonparametric Covariance Regression. Duke University, Durham (2011)
Sudderth, E., Jordan, M.I.: Shared segmentation of natural scenes using dependent Pitman-Yor processes, In: NIPS (2008)
Shamaie, A.: Rejecting Out-of-Vocabulary Words, U.S. Patent No. 8,565,535, October 2013
Johnson, M., Willsky, A.: Bayesian nonparametric hidden semi-Markov models. J. Mach. Learn. Res. 14, 673–701 (2013)
Bargi, A., Xu, R., Piccardi, M.: An online HDP-HMM for joint action segmentation and classification in motion capture data. In: CVPR 2012, Providence, June 2012
Torbati, A., Picone, J., Sobel, M.: A left-to-right HDP-HMM with HDPM emissions. In: 48th Annual Conference on Information Sciences and Systems, Princeton, March 2014
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Shamaie, A. (2016). A Hidden Markov Model with Controlled Non-parametric Emissions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9692. Springer, Cham. https://doi.org/10.1007/978-3-319-39378-0_54
Download citation
DOI: https://doi.org/10.1007/978-3-319-39378-0_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39377-3
Online ISBN: 978-3-319-39378-0
eBook Packages: Computer ScienceComputer Science (R0)