Abstract
Neural network architectures have been proven useful to model the intrinsic characteristics of photovoltaic cells. The possibility to get rid of an a priori model is one of the many advantages of such an approach as well as the resulting accuracy, robustness and speed. Neural networks have been used to model the characteristics of traditional silicon-based photovoltaic modules, and in this work we have investigated a model for new generation organic solar cells. Silicon-based cells were generally prone to be modeled by simple circuital parameter sets, however for organic cells the process is generally impervious. For this reason, we show that the application of Radial Basis Neural Networks has resulted advantageous to modeling. We have used such networks together with an algorithmic solution to automatically parametrize the Voltage-Current characteristics of organic photovoltaic modules.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
AbdulHadi, M., Al-Ibrahim, A.M., Virk, G.S.: Neuro-fuzzy-based solar cell model. IEEE Trans. Energy Convers. 19(3), 619–624 (2004)
Bonanno, F., Capizzi, G., Napoli, C.: Hybrid neural networks architectures for soc and voltage prediction of new generation batteries storage. In: Proceedings of IEEE International Conference on Clean Electrical Power (ICCEP), Ischia, Italy, pp. 341–344, June 2011. doi:10.1109/ICCEP.2011.6036301
Bonanno, F., Capizzi, G., Napoli, C.: Some remarks on the application of rnn and prnn for the charge-discharge simulation of advanced lithium-ions battery energy storage. In: Proceedings of IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, pp. 941–945, June 2012. doi:10.1109/SPEEDAM.2012.6264500
Bonanno, F., Capizzi, G., Sciuto, G.L., Napoli, C., Pappalardo, G., Tramontana, E.: A cascade neural network architecture investigating surface plasmon polaritons propagation for thin metals in openmp. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 22–33. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07173-2_3
Capizzi, G., Bonanno, F., Napoli, C.: Recurrent neural network-based control strategy for battery energy storage in generation systems with intermittent renewable energy sources. In: IEEE International Conference on Clean Electrical Power (ICCEP), pp. 336–340. IEEE (2011)
Capizzi, G., Napoli, C., Paternò, L.: An innovative hybrid neuro-wavelet method for reconstruction of missing data in astronomical photometric surveys. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 21–29. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_3
Di Piazza, M.C., Vitale, G.: Photovoltaic field emulation including dynamic and partial shadow conditions. Appl. Energy 87(3), 814–823 (2010)
Dziwiński, P., Bartczuk, Ł., Przybył, A., Avedyan, E.D.: A new algorithm for identification of significant operating points using swarm intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 349–362. Springer, Heidelberg (2014)
Horzyk, A.: Innovative types and abilities of neural networks based on associative mechanisms and a new associative model of neurons. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9119, pp. 26–38. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19324-3_3
Huang, T., Li, C., Duan, S., Starzyk, J.: Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans. Neural Netw. Learn. Syst. 23(6), 866–875 (2012). doi:10.1109/TNNLS.2012.2192135
Karayiannis, N.B., Mi, G.W.: Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques. IEEE Trans. Neural Netw. 8(6), 1492–1506 (1997)
Napoli, C., Pappalardo, G., Tramontana, E., Nowicki, R.K., Starczewski, J.T., Woźniak, M.: Toward work groups classification based on probabilistic neural network approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9119, pp. 79–89. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19324-3_8
Napoli, C., Pappalardo, G., Tramontana, E., Zappalà, G.: A cloud-distributed gpu architecture for pattern identification in segmented detectors big-data surveys. Comput. J. 59(3), 338–352 (2016). doi:10.1093/comjnl/bxu147
Nguyen, V., Starzyk, J., Goh, W., Jachyra, D.: Neural network structure for spatio-temporal long-term memory. IEEE Trans. Neural Netw. Learn. Syst. 23(6), 971–983 (2012). doi:10.1109/TNNLS.2012.2191419
Nowak, B.A., Nowicki, R.K., Woźniak, M., Napoli, C.: Multi-class nearest neighbour classifier for incomplete data handling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9119, pp. 469–480. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19324-3_42
Ravaee, H., Farahat, S., Sarhaddi, F.: Artificial neural network based model of photovoltaic thermal (pv/t) collector. J. Math. Comput. Sci. 4(3), 411–417 (2012)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1048–1059 (2015)
Sandrolini, L., Artioli, M., Reggiani, U.: Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis. Appl. Energy 87(2), 442–451 (2010)
Singh, K.J., Kho, K.R., Singh, S.J., Devi, Y.C., Singh, N.B., Sarkar, S.: Artificial neural network approach for more accurate solar cell electrical circuit model. Int. J. Comput. Appl. 4(3), 101–116 (2014)
Starczewski, J.T., Nowicki, R.K., Nowak, B.A.: Genetic fuzzy classifier with fuzzy rough sets for imprecise data. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2014, Beijing, China, pp. 1382–1389, 6–11 July 2014
Swiechowski, M., Mandziuk, J.: Self-adaptation of playing strategies in general game playing. IEEE Trans. Comput. Intell. AI Games 6(4), 367–381 (2014)
Waledzik, K., Mandziuk, J.: An automatically generated evaluation function in general game playing. IEEE Trans. Comput. Intell. AI Games 6(3), 258–270 (2014)
Wozniak, M., Polap, D., Nowicki, R.K., Napoli, C., Pappalardo, G., Tramontana, E.: Novel approach toward medical signals classifier. In: International Joint Conference on Neural Networks (IJCNN), pp. 1924–1930. IEEE (2015)
Acknowledgments
This work has been supported by the BGU-ENEA joint lab and the ILSE-Joint Italian-Israeli Laboratory on Solar and Alternative Energies.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Gotleyb, D., Sciuto, G.L., Napoli, C., Shikler, R., Tramontana, E., Woźniak, M. (2016). Characterisation and Modeling of Organic Solar Cells by Using Radial Basis Neural Networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9692. Springer, Cham. https://doi.org/10.1007/978-3-319-39378-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-39378-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39377-3
Online ISBN: 978-3-319-39378-0
eBook Packages: Computer ScienceComputer Science (R0)