Abstract
The purpose of nonlinear correction modelling of dynamic object is to use an approximated linear model of an object and determine corrections of this model in an appropriate way, taking into account the specificity of modelled nonlinearity. In this paper a new method for generating the coefficients of correction matrices is proposed. This method uses a mathematical formulas determined automatically by the Gene Expression Programming algorithm extended by semantic operator.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barland, M., et al.: Commende optimal d’un systeme generateur photovoltaique converisseur statique - receptur. Revue Phys. Appl. 19, 905–915 (1984)
Bartczuk, Ł., Przybył, A., Dziwiński, P.: Hybrid state variables - fuzzy logic modelling of nonlinear objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 227–234. Springer, Heidelberg (2013)
Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for nonlinear fuzzy correction modelling of dynamic objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 169–180. Springer, Heidelberg (2014)
Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: 2008 IEEE Congress on Evolutionary Computation (CEC), pp. 111–116 (2008)
Beadle, L., Johnson, C.: Semantically driven mutation in genetic programming. In: 2009 IEEE Congress on Evolutionary Computation (CEC), pp. 1336–1342 (2009)
Caughey, T.K.: Equivalent linearization techniques. J. Acoust. Soc. Am. 35(11), 1706–1711 (1963)
Chaibakhsh, A., Chaibakhsh, N., Abbasi, M., Norouzi, A.: Orthonormal basis function fuzzy systems for biological wastewater treatment processes modeling. J. Artif. Intell. Soft Comput. Res. 2(4), 343–356 (2012)
Chen, Q., Abercrombie, R.K., Sheldon, F.T.: Risk assessment for industrial control systems quantifying availability using Mean Failure Cost (MFC). J. Artif. Intell. Soft Comput. Res. 5(3), 205–220 (2015)
Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks and optimal linear predictors. Sig. Process.: Image Commun. 156, 559–565 (2000)
Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)
Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Anal. Ser. A: Theory Methods Appl. Elsevier 71, 1659–1672 (2009)
Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)
Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)
Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gener. Syst. 42(6), 706–720 (2013)
Cpałka, K., Rutkowski, L.: A new method for designing and reduction of neuro-fuzzy systems. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2006), Vancouver, BC, Canada, pp. 8510–8516 (2006)
Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks 2005, Montreal, pp. 1764–1769 (2005)
Cpałka, K., Rutkowski, L.: 2005, Flexible Takagi-Sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Trans. Syst. 4(9), 1450–1458 (2005)
Cpałka, K., Zalasiński, M.: On-line signature verification using vertical signature partitioning. Expert Syst. Appl. 41(9), 4170–4180 (2014)
Cpałka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signature verification based on horizontal partitioning. Pattern Recogn. 47, 2652–2661 (2014)
Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)
Dziwiński, P., Bartczuk, Ł., Przybył, A., Avedyan, E.D.: A new algorithm for identification of significant operating points using swarm intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 349–362. Springer, Heidelberg (2014)
Dziwiński, P., Avedyan, E.D.: A new approach to nonlinear modeling based on significant operating points detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 364–378. Springer, Heidelberg (2015)
Ferreira, C.: Gene Expression Programming in Problem Solving. Soft Computing and Industry. Springer, London (2002)
Ferreira, C.: Gene expression programming: a new algorithm for solving problems. Complex Syst. 13(2), 87–129 (2001)
Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, 2nd edn. Springer, Germany (2006)
Folly, K.: Parallel PBIL applied to power system controller design. J. Artif. Intell. Soft Comput. Res. 3(3), 215–223 (2013)
Galvan-Lopez, E., Cody-Kenny, B., Trujillo, L., Kattan, A.: Using semantics in the selection mechanism in genetic programming: a simple method for promoting semantic diversity. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2972–2979 (2013)
Gałkowski, T.: Kernel estimation of regression functions in the boundary regions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 158–166. Springer, Heidelberg (2013)
Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions with applications to system identification. Proc. IEEE 73(5), 942–943 (1985)
Gręblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric pattern recognition procedures. Proc. IEEE 69(4), 482–483 (1981)
Ismail, S., Pashilkar, A.A., Ayyagari, R., Sundararajan, N.: Neural-sliding mode augmented robust controller for autolanding of fixed wing aircraft. J. Artif. Intell. Soft Comput. Res. 2(4), 317–330 (2012)
Jimenez, F., Yoshikawa, T., Furuhashi, T., Kanoh, M.: An emotional expression model for educational-support robots. J. Artif. Intell. Soft Comput. Res. 5(1), 51–57 (2015)
Jordan, A.J.: Linearization of non-linear state equation, Bulletin of the Polish academy of science. Tech. Sci. 54(1), 63–73 (2006)
Kaczorek, T., Dzieliński, A., Da̧browski L., Łopatka R.: The basis of control theory, WNT, Warsaw (2006) (in Polish)
Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)
Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)
Koza, J.R.: Genetic Programming - On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)
Koza, J.R.: Human-competitive results produced by genetic programming. Genet. Programm. Evolvable Mach. 11(3–4), 251–284 (2010)
Krawiec, K.: Genetic programming: where meaning emerges from program code. Genet. Programm. Evolvable Mach., Springer 15(1), 75–77 (2014)
Lin, C.H., Dong, F.Y., Hirota, K.: Common driving notification protocol based on classified driving behavior for cooperation intelligent autonomous vehicle using vehicular ad-hoc network technology. J. Artif. Intell. Soft Comput. Res. 5(1), 5–21 (2015)
Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 217–232. Springer, Heidelberg (2014)
Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 523–534. Springer, Heidelberg (2013)
Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 329–344. Springer, Heidelberg (2013)
Machado, P., Correia, J.: Semantic aware methods for evolutionary art. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 301–308 (2014)
Miyajima, H., Shigei, N., Miyajima, H.: Performance comparison of hybrid electromagnetism-like mechanism algorithms with descent method. J. Artif. Intell. Soft Comput. Res. 5(4), 271–282 (2015)
Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Programm. Evolvable Mach. Springer 16(3), 351–386 (2015)
Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)
Rigatos, G.G., Siano, P.: Flatness-based adaptive fuzzy control of spark-ignited engines. J. Artif. Intell. Soft Comput. Res. 4(4), 231–242 (2014)
Rutkowski, L.: On nonparametric identification with prediction of time-varying systems. IEEE Trans. Autom. Control 29(1), 58–60 (1984)
Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Syst. Control Lett. 6(1), 33–35 (1985)
Rutkowski, L.: Real-time identification of time-varying systems by non-parametric algorithms based on Parzen kernels. Int. J. Syst. Sci. 16(9), 1123–1130 (1985)
Rutkowski, L.: A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Trans. Circuits Syst. 33(8), 812–818 (1986)
Rutkowski, L.: Sequential pattern-recognition procedures derived from multiple Fourier-series. Pattern Recogn. Lett. 8(4), 213–216 (1988)
Rutkowski, L.: Application of multiple Fourier-series to identification of multivariable non-stationary systems. Int. J. Syst. Sci. 20(10), 1993–2002 (1989)
Rutkowski, L.: Non-parametric learning algorithms in time-varying environments. Sig. Process. 182, 129–137 (1989)
Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Trans. Sig. Process. 41(10), 3062–3065 (1993)
Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)
Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Heidelberg (2008)
Rutkowski, L., Cpałka, K.: Flexible Structures of Neuro-Fuzzy Systems. Quo Vadis Computational Intelligence. Studies in Fuzziness and Soft Computing, pp. 479–484. Springer, Heidelberg (2000)
Rutkowski, L., Cpałka, K.: A general approach to neuro-fuzzy systems. In: The 10th IEEE International Conference on Fuzzy Systems, Melbourne, pp. 1428–1431 (2001)
Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press (2002)
Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control Cybern. 31(2), 297–308 (2002)
Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, 26–29 July 2004, vol. 2, pp. 1031–1036 (2004)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014)
Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)
Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010)
Rutkowski, L., Przybył, A., Cpałka, K.: Novel on-line speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Ind. Electr. 59, 1238–1247 (2012)
Starczewski, J.T., Bartczuk, Ł., Dziwiński, P., Marvuglia, A.: Learning methods for Type-2 FLS based on FCM. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS, vol. 6113, pp. 224–231. Springer, Heidelberg (2010)
Starczewski, J.T., Rutkowski, L.: Connectionist structures of Type 2 fuzzy inference systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)
Sugiyama, H.: Pulsed power network based on decentralized intelligence for reliable and lowloss electrical power distribution. J. Artif. Intell. Soft Comput. Res. 5(2), 97–108 (2015)
Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal controllers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 91–100. Springer, Heidelberg (2013)
Szczypta, J., Przybył, A., Wang, L.: Evolutionary approach with multiple quality criteria for controller design. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 455–467. Springer, Heidelberg (2014)
Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method. J. Artif. Intell. Soft Comput. Res. 1(1), 59–79 (2011)
Thiagarajan, R., Rahman, M., Gossink, D., Calbert, G.: A data mining approach to improve military demand forecasting. J. Artif. Intell. Soft Comput. Res. 4(3), 205–214 (2014)
Tran, V.N., Brdys, M.A.: Optimizing control by robustly feasible model predictive control and application to drinking water distribution systems. J. Artif. Intell. Soft Comput. Res. 1(1), 43–57 (2011)
Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galvan-Lopez, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genet. Programm. Evolvable Mach. 12(2), 91–119 (2011)
Wang, G., Zhang, S.: ABM with behavioral bias and applications in simulating China stock market. J. Artif. Intell. Soft Comput. Res. 5(4), 257–270 (2015)
Wang, Z., Zhang-Westmant, L.: New ranking method for fuzzy numbers by their expansion center. J. Artif. Intell. Soft Comput. Res. 4(3), 181–187 (2014)
Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 362–367. Springer, Heidelberg (2012)
Zalasiński, M., Cpałka, K.: New approach for the on-line signature verification based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 342–350. Springer, Heidelberg (2013)
Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 493–502. Springer, Heidelberg (2013)
Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 216–230. Springer, Heidelberg (2014)
Zalasiński, M., Cpałka, K., Er, M.J.: A new method for the dynamic signature verification based on the stable partitions of the signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 161–174. Springer, Heidelberg (2015)
Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 231–245. Springer, Heidelberg (2014)
Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 175–188. Springer, Heidelberg (2015)
Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013)
Acknowledgment
The project was financed by the National Science Center on the basis of the decision number DEC-2012/05/B/ST7/02138.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Bartczuk, Ł., Galushkin, A.I. (2016). A New Method for Generating Nonlinear Correction Models of Dynamic Objects Based on Semantic Genetic Programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-39384-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39383-4
Online ISBN: 978-3-319-39384-1
eBook Packages: Computer ScienceComputer Science (R0)