Skip to main content

A New Method for Generating Nonlinear Correction Models of Dynamic Objects Based on Semantic Genetic Programming

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9693))

Included in the following conference series:

Abstract

The purpose of nonlinear correction modelling of dynamic object is to use an approximated linear model of an object and determine corrections of this model in an appropriate way, taking into account the specificity of modelled nonlinearity. In this paper a new method for generating the coefficients of correction matrices is proposed. This method uses a mathematical formulas determined automatically by the Gene Expression Programming algorithm extended by semantic operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barland, M., et al.: Commende optimal d’un systeme generateur photovoltaique converisseur statique - receptur. Revue Phys. Appl. 19, 905–915 (1984)

    Article  Google Scholar 

  2. Bartczuk, Ł., Przybył, A., Dziwiński, P.: Hybrid state variables - fuzzy logic modelling of nonlinear objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 227–234. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for nonlinear fuzzy correction modelling of dynamic objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 169–180. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  4. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: 2008 IEEE Congress on Evolutionary Computation (CEC), pp. 111–116 (2008)

    Google Scholar 

  5. Beadle, L., Johnson, C.: Semantically driven mutation in genetic programming. In: 2009 IEEE Congress on Evolutionary Computation (CEC), pp. 1336–1342 (2009)

    Google Scholar 

  6. Caughey, T.K.: Equivalent linearization techniques. J. Acoust. Soc. Am. 35(11), 1706–1711 (1963)

    Article  MathSciNet  Google Scholar 

  7. Chaibakhsh, A., Chaibakhsh, N., Abbasi, M., Norouzi, A.: Orthonormal basis function fuzzy systems for biological wastewater treatment processes modeling. J. Artif. Intell. Soft Comput. Res. 2(4), 343–356 (2012)

    Google Scholar 

  8. Chen, Q., Abercrombie, R.K., Sheldon, F.T.: Risk assessment for industrial control systems quantifying availability using Mean Failure Cost (MFC). J. Artif. Intell. Soft Comput. Res. 5(3), 205–220 (2015)

    Article  Google Scholar 

  9. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks and optimal linear predictors. Sig. Process.: Image Commun. 156, 559–565 (2000)

    Google Scholar 

  10. Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Anal. Ser. A: Theory Methods Appl. Elsevier 71, 1659–1672 (2009)

    Article  Google Scholar 

  12. Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)

    Google Scholar 

  13. Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)

    Article  Google Scholar 

  14. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gener. Syst. 42(6), 706–720 (2013)

    Article  MATH  Google Scholar 

  15. Cpałka, K., Rutkowski, L.: A new method for designing and reduction of neuro-fuzzy systems. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2006), Vancouver, BC, Canada, pp. 8510–8516 (2006)

    Google Scholar 

  16. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks 2005, Montreal, pp. 1764–1769 (2005)

    Google Scholar 

  17. Cpałka, K., Rutkowski, L.: 2005, Flexible Takagi-Sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Trans. Syst. 4(9), 1450–1458 (2005)

    Google Scholar 

  18. Cpałka, K., Zalasiński, M.: On-line signature verification using vertical signature partitioning. Expert Syst. Appl. 41(9), 4170–4180 (2014)

    Article  Google Scholar 

  19. Cpałka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signature verification based on horizontal partitioning. Pattern Recogn. 47, 2652–2661 (2014)

    Article  Google Scholar 

  20. Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)

    Article  Google Scholar 

  21. Dziwiński, P., Bartczuk, Ł., Przybył, A., Avedyan, E.D.: A new algorithm for identification of significant operating points using swarm intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 349–362. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Dziwiński, P., Avedyan, E.D.: A new approach to nonlinear modeling based on significant operating points detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 364–378. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  23. Ferreira, C.: Gene Expression Programming in Problem Solving. Soft Computing and Industry. Springer, London (2002)

    Book  Google Scholar 

  24. Ferreira, C.: Gene expression programming: a new algorithm for solving problems. Complex Syst. 13(2), 87–129 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, 2nd edn. Springer, Germany (2006)

    MATH  Google Scholar 

  26. Folly, K.: Parallel PBIL applied to power system controller design. J. Artif. Intell. Soft Comput. Res. 3(3), 215–223 (2013)

    Article  Google Scholar 

  27. Galvan-Lopez, E., Cody-Kenny, B., Trujillo, L., Kattan, A.: Using semantics in the selection mechanism in genetic programming: a simple method for promoting semantic diversity. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2972–2979 (2013)

    Google Scholar 

  28. Gałkowski, T.: Kernel estimation of regression functions in the boundary regions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 158–166. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  29. Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions with applications to system identification. Proc. IEEE 73(5), 942–943 (1985)

    Article  Google Scholar 

  30. Gręblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric pattern recognition procedures. Proc. IEEE 69(4), 482–483 (1981)

    Article  Google Scholar 

  31. Ismail, S., Pashilkar, A.A., Ayyagari, R., Sundararajan, N.: Neural-sliding mode augmented robust controller for autolanding of fixed wing aircraft. J. Artif. Intell. Soft Comput. Res. 2(4), 317–330 (2012)

    Google Scholar 

  32. Jimenez, F., Yoshikawa, T., Furuhashi, T., Kanoh, M.: An emotional expression model for educational-support robots. J. Artif. Intell. Soft Comput. Res. 5(1), 51–57 (2015)

    Article  Google Scholar 

  33. Jordan, A.J.: Linearization of non-linear state equation, Bulletin of the Polish academy of science. Tech. Sci. 54(1), 63–73 (2006)

    Google Scholar 

  34. Kaczorek, T., Dzieliński, A., Da̧browski L., Łopatka R.: The basis of control theory, WNT, Warsaw (2006) (in Polish)

    Google Scholar 

  35. Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  36. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  37. Koza, J.R.: Genetic Programming - On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  38. Koza, J.R.: Human-competitive results produced by genetic programming. Genet. Programm. Evolvable Mach. 11(3–4), 251–284 (2010)

    Article  Google Scholar 

  39. Krawiec, K.: Genetic programming: where meaning emerges from program code. Genet. Programm. Evolvable Mach., Springer 15(1), 75–77 (2014)

    Article  Google Scholar 

  40. Lin, C.H., Dong, F.Y., Hirota, K.: Common driving notification protocol based on classified driving behavior for cooperation intelligent autonomous vehicle using vehicular ad-hoc network technology. J. Artif. Intell. Soft Comput. Res. 5(1), 5–21 (2015)

    Article  Google Scholar 

  41. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 217–232. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  42. Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 523–534. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  43. Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 329–344. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  44. Machado, P., Correia, J.: Semantic aware methods for evolutionary art. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 301–308 (2014)

    Google Scholar 

  45. Miyajima, H., Shigei, N., Miyajima, H.: Performance comparison of hybrid electromagnetism-like mechanism algorithms with descent method. J. Artif. Intell. Soft Comput. Res. 5(4), 271–282 (2015)

    Article  MATH  Google Scholar 

  46. Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Programm. Evolvable Mach. Springer 16(3), 351–386 (2015)

    Article  Google Scholar 

  47. Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  48. Rigatos, G.G., Siano, P.: Flatness-based adaptive fuzzy control of spark-ignited engines. J. Artif. Intell. Soft Comput. Res. 4(4), 231–242 (2014)

    Article  Google Scholar 

  49. Rutkowski, L.: On nonparametric identification with prediction of time-varying systems. IEEE Trans. Autom. Control 29(1), 58–60 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Syst. Control Lett. 6(1), 33–35 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rutkowski, L.: Real-time identification of time-varying systems by non-parametric algorithms based on Parzen kernels. Int. J. Syst. Sci. 16(9), 1123–1130 (1985)

    Article  MATH  Google Scholar 

  52. Rutkowski, L.: A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Trans. Circuits Syst. 33(8), 812–818 (1986)

    Article  MATH  Google Scholar 

  53. Rutkowski, L.: Sequential pattern-recognition procedures derived from multiple Fourier-series. Pattern Recogn. Lett. 8(4), 213–216 (1988)

    Article  MATH  Google Scholar 

  54. Rutkowski, L.: Application of multiple Fourier-series to identification of multivariable non-stationary systems. Int. J. Syst. Sci. 20(10), 1993–2002 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rutkowski, L.: Non-parametric learning algorithms in time-varying environments. Sig. Process. 182, 129–137 (1989)

    Article  MathSciNet  Google Scholar 

  56. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Trans. Sig. Process. 41(10), 3062–3065 (1993)

    Article  MATH  Google Scholar 

  57. Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)

    Article  MathSciNet  Google Scholar 

  58. Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  59. Rutkowski, L., Cpałka, K.: Flexible Structures of Neuro-Fuzzy Systems. Quo Vadis Computational Intelligence. Studies in Fuzziness and Soft Computing, pp. 479–484. Springer, Heidelberg (2000)

    Google Scholar 

  60. Rutkowski, L., Cpałka, K.: A general approach to neuro-fuzzy systems. In: The 10th IEEE International Conference on Fuzzy Systems, Melbourne, pp. 1428–1431 (2001)

    Google Scholar 

  61. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press (2002)

    Google Scholar 

  62. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control Cybern. 31(2), 297–308 (2002)

    MATH  Google Scholar 

  63. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, 26–29 July 2004, vol. 2, pp. 1031–1036 (2004)

    Google Scholar 

  64. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)

    Article  MATH  Google Scholar 

  65. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014)

    Article  MATH  Google Scholar 

  66. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)

    Article  Google Scholar 

  67. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  68. Rutkowski, L., Przybył, A., Cpałka, K.: Novel on-line speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Ind. Electr. 59, 1238–1247 (2012)

    Article  Google Scholar 

  69. Starczewski, J.T., Bartczuk, Ł., Dziwiński, P., Marvuglia, A.: Learning methods for Type-2 FLS based on FCM. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS, vol. 6113, pp. 224–231. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  70. Starczewski, J.T., Rutkowski, L.: Connectionist structures of Type 2 fuzzy inference systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  71. Sugiyama, H.: Pulsed power network based on decentralized intelligence for reliable and lowloss electrical power distribution. J. Artif. Intell. Soft Comput. Res. 5(2), 97–108 (2015)

    Article  Google Scholar 

  72. Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal controllers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 91–100. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  73. Szczypta, J., Przybył, A., Wang, L.: Evolutionary approach with multiple quality criteria for controller design. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 455–467. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  74. Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method. J. Artif. Intell. Soft Comput. Res. 1(1), 59–79 (2011)

    Google Scholar 

  75. Thiagarajan, R., Rahman, M., Gossink, D., Calbert, G.: A data mining approach to improve military demand forecasting. J. Artif. Intell. Soft Comput. Res. 4(3), 205–214 (2014)

    Article  Google Scholar 

  76. Tran, V.N., Brdys, M.A.: Optimizing control by robustly feasible model predictive control and application to drinking water distribution systems. J. Artif. Intell. Soft Comput. Res. 1(1), 43–57 (2011)

    Google Scholar 

  77. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galvan-Lopez, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genet. Programm. Evolvable Mach. 12(2), 91–119 (2011)

    Article  Google Scholar 

  78. Wang, G., Zhang, S.: ABM with behavioral bias and applications in simulating China stock market. J. Artif. Intell. Soft Comput. Res. 5(4), 257–270 (2015)

    Article  Google Scholar 

  79. Wang, Z., Zhang-Westmant, L.: New ranking method for fuzzy numbers by their expansion center. J. Artif. Intell. Soft Comput. Res. 4(3), 181–187 (2014)

    Article  Google Scholar 

  80. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 362–367. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  81. Zalasiński, M., Cpałka, K.: New approach for the on-line signature verification based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 342–350. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  82. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 493–502. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  83. Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 216–230. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  84. Zalasiński, M., Cpałka, K., Er, M.J.: A new method for the dynamic signature verification based on the stable partitions of the signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 161–174. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  85. Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 231–245. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  86. Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 175–188. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  87. Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Acknowledgment

The project was financed by the National Science Center on the basis of the decision number DEC-2012/05/B/ST7/02138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Bartczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bartczuk, Ł., Galushkin, A.I. (2016). A New Method for Generating Nonlinear Correction Models of Dynamic Objects Based on Semantic Genetic Programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39384-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39383-4

  • Online ISBN: 978-3-319-39384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics