Abstract
In this paper we propose a new approach for nonlinear modelling. It uses capabilities of the Takagi-Sugeno neuro-fuzzy systems and population based algorithms. The aim of our method is to ensure that created model achieves appropriate accuracy and is as compact as possible. In order to obtain this aim we incorporate semantic information about created fuzzy rules into process of evolution. Our method was tested with the use of well-known benchmarks from the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bartczuk, Ł., Przybył, A., Dziwiński, P.: Hybrid state variables - Fuzzy logic modelling of nonlinear objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 227–234. Springer, Heidelberg (2013)
Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for nonlinear fuzzy correction modelling of dynamic objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 169–180. Springer, Heidelberg (2014)
Bas, E.: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)
Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: 2008 IEEE Congress on Evolutionary Computation (CEC), pp. 111–116 (2008)
Beadle, L., Johnson, C.: Semantically driven mutation in genetic programming. In: 2009 IEEE Congress on Evolutionary Computation (CEC), pp. 1336–1342 (2009)
Brooks, T.F., Pope, D.S., Marcolini, A.M.: Airfoil self-noise and prediction, Technical report, NASA RP-1218 (1989)
Chaibakhsh, A., Chaibakhsh, N., Abbasi, M., Norouzi, A.: Orthonormal basis function fuzzy systems for biological wastewater treatment processes modeling. J. Artif. Intell. Soft Comput. Res. 2(4), 343–356 (2012)
Chang, W.-J., Chang, W., Liu, H.-H.: Model-based fuzzy modeling and control for autonomous underwater vehicles in the horizontal plane. J. Mar. Sci. Technol. 11(3), 155–163 (2003)
Chen, Q., Abercrombie, R.K., Sheldon, F.T.: Risk assessment for industrial control systems quantifying availability using mean failure cost (MFC). J. Artif. Intell. Soft Comput. Res. 5(3), 205–220 (2015)
Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)
Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Anal. Ser. A Theor. Methods Appl. 71, 1659–1672 (2009). Elsevier
Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)
Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)
Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 3, pp. 1764–1769 (2005)
Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Trans. Syst. 4(9), 1450–1458 (2005)
Cpałka, K., Rutkowski, L.: A new method for designing and reduction of neuro-fuzzy systems, In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2006), Vancouver, BC, Canada, pp. 8510–8516 (2006)
Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks 2005, Montreal, pp. 1764–1769 (2005)
Cpałka, K., Zalasiński, M.: On-line signature verification using vertical signature partitioning. Expert Syst. Appl. 41(9), 4170–4180 (2014)
Cpałka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signature verification based on horizontal partitioning. Pattern Recogn. 47, 2652–2661 (2014)
Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft comput. 43, 47–56 (2016)
Delgado, M.R., Zuben, F.V., Gomide, F.: Coevolutionary genetic fuzzy systems: a hierarchical collaborative approach. Fuzzy Sets Syst. 141, 89–106 (2004). Elsevier
Dziwiński, P., Bartczuk, Ł., Starczewski, J.T.: Fully controllable ant colony system for text data clustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS, vol. 7269, pp. 199–205. Springer, Heidelberg (2012)
Dziwiñski, P., Rutkowska, D.: Algorithm for generating fuzzy rules for WWW document classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1111–1119. Springer, Heidelberg (2006)
Dziwiński, P., Rutkowska, D.: Ant focused crawling algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1018–1028. Springer, Heidelberg (2008)
Dziwiński, P., Starczewski, J.T., Bartczuk, Ł.: New linguistic hedges in construction of interval type-2 FLS. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 445–450. Springer, Heidelberg (2010)
Dziwiński, P., Bartczuk, Ł., Przybył, A., Avedyan, E.D.: A new algorithm for identification of significant operating points using swarm intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 349–362. Springer, Heidelberg (2014)
Dziwiński, P., Avedyan, E.D.: A new approach to nonlinear modeling based on significant operating points detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 364–378. Springer, Heidelberg (2015)
Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, 2nd edn. Springer, Germany (2006)
Folly, K.: Parallel Pbil applied to power system controller design. J. Artif. Intell. Soft Comput. Res. 3(3), 215–223 (2013)
Galvan-Lopez, E., Cody-Kenny, B., Trujillo, L., Kattan, A.: Using semantics in the selection mechanism in genetic programming: a simple method for promoting semantic diversity. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2972–2979 (2013)
Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions with applications to system identification. Proc. IEEE 73(5), 942–943 (1985)
Hoffman, F., Nelles, O.: Genetic programming for model selection of TSK-fuzzy systems. Inf. Sci. 136, 7–28 (2001). Elsevier
Ismail, S., Pashilkar, A.A., Ayyagari, R., Sundararajan, N.: Neural-sliding mode augmented robust controller for autolanding of fixed wing aircraft. J. Artif. Intell. Soft Comput. Res. 2(4), 317–330 (2012)
Jimenez, F., Yoshikawa, T., Furuhashi, T., Kanoh, M.: An emotional expression model for educational-support robots. J. Artif. Intell. Soft Comput. Res. 5(1), 51–57 (2015)
Johansen, T.A., Shorten, R., Murray-Smith, R.: On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 8(3), 297–313 (2000)
Kaczorek, T., Dzieliński, A., Da̧browski L., Łopatka R.: The Basis of Control Theory, WNT, Warsaw (2006) (in Polish)
Kamyar, M.: Takagi-Sugeno Fuzzy Modeling for Process Control Industrial Automation, Robotics and Artificial Intelligence (EEE8005), School of Electrical, Electronic and Computer Engineering, vol. 8 (2008)
Kibler, D., Aha, D.: Instance-based prediction of real-valued attributes. In: Proceedings of the CSCSI (Canadian AI) Conference (1988)
Koprinkova-Hristova, P.: Backpropagation through time training of a neuro-fuzzy controller. Int. J. Neural Syst. 20(5), 421–428 (2010)
Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)
Koshiyama, A.S., Vellasco, M., Tanscheit, R.: Gpfis-control: a genetic fuzzy system for control tasks. J. Artif. Intell. Soft Comput. Res. 4(3), 167–179 (2014)
Koza, J.R.: Genetic programming - On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)
Krawiec, K.: Genetic programming: where meaning emerges from program code. Genet. Program. Evolvable Mach. 15(1), 75–77 (2014). Springer
Lin, C.H., Dong, F.Y., Hirota, K.: Common driving notification protocol based on classified driving behavior for cooperation intelligent autonomous vehicle using vehicular ad-hoc network technology. J. Artif. Intell. Soft Comput. Res. 5(1), 5–21 (2015)
Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 523–534. Springer, Heidelberg (2013)
Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 329–344. Springer, Heidelberg (2013)
Laskowski, Ł.: A novel hybrid-maximum neural network in stereo-matching process. Neural Comput. Appl. 23(7–8), 2435–2450 (2013). Springer
Laskowski, Ł., Jelonkiewicz, J.: Self-correcting neural network for stereo-matching problem solving. Fundamenta Informaticae 138(4), 457–482 (2015). IOS Press
Miyajima, H., Shigei, N., Miyajima, H.: Performance comparison of hybrid electromagnetism-like mechanism algorithms with descent method. J. Artif. Intell. Soft Comput. Res. 5(4), 271–282 (2015)
Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)
Quinlan, R.: Combining instance-based and model-based learning. In: Proceedings on the Tenth International Conference of Machine Learning, pp. 236–243 (1993)
Rigatos, G.G., Siano, P.: Flatness-based adaptive fuzzy control of spark-ignited engines. J. Artif. Intell. Soft Comput. Res. 4(4), 231–242 (2014)
Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)
Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Heidelberg (2008)
Rutkowski, L., Cpałka, K.: Flexible structures of neuro-fuzzy systems. Quo Vadis Computational Intelligence, Studies in Fuzziness and Soft Computing, Springer 54, 479–484 (2000)
Rutkowski, L., Cpałka, K.: A general approach to neuro-fuzzy systems. In: The 10th IEEE International Conference on Fuzzy Systems, 2001, Melbourne, pp. 1428–1431 (2001)
Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications. IOS Press, vol. 76, pp. 85–90 (2002)
Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press, Amsterdam (2002)
Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, 26–29 July 2014, vol. 2, pp. 1031–1036 (2004)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014)
Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision Trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)
Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010)
Rutkowski, L., Przybył, A., Cpałka, K.: Novel on-line speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Industr. Electron. 59, 1238–1247 (2012)
Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010)
Starczewski, J.T., Bartczuk, Ł., Dziwiński, P., Marvuglia, A.: Learning methods for type-2 FLS based on FCM. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS, vol. 6113, pp. 224–231. Springer, Heidelberg (2010)
Sugeno, M., Yasukawa, T.: A fuzzy logic based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1, 7–31 (1993)
Sugiyama, H.: Pulsed power network based on decentralized intelligence for reliable and lowloss electrical power distribution. J. Artif. Intell. Soft Comput. Res. 5(2), 97–108 (2015)
Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal controllers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 91–100. Springer, Heidelberg (2013)
Szczypta, J., Przybył, A., Wang, L.: Evolutionary approach with multiple quality criteria for controller design. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 455–467. Springer, Heidelberg (2014)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)
Tsakonas, A.: Local and global optimization for Takagi-Sugeno fuzzy system by memetic genetic programming. Expert Syst. Appl. 40(8), 3282–3298 (2013)
Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method. J. Artif. Intell. Soft Comput. Res. 1(1), 59–79 (2011)
Thiagarajan, R., Rahman, M., Gossink, D., Calbert, G.: A data mining approach to improve military demand forecasting. J. Artif. Intell. Soft Comput. Res. 4(3), 205–214 (2014)
Tran, V.N., Brdys, M.A.: Optimizing control by robustly feasible model predictive control and application to drinking water distribution systems. J. Artif. Intell. Soft Comput. Res. 1(1), 43–57 (2011)
Yeh, I.C.: Modeling of strength of high performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998)
Wang, G., Zhang, S.: ABM with behavioral bias and applications in simulating China stock market. J. Artif. Intell. Soft Comput. Res. 5(4), 257–270 (2015)
Wang, Z., Zhang-Westmant, L.: New ranking method for fuzzy numbers by their expansion center. J. Artif. Intell. Soft Comput. Res. 4(3), 181–187 (2014)
Zalasiński, M., Cpałka, K.: A New Method of On-Line Signature Verification Using a Flexible Fuzzy One-Class Classifier. Academic Publishing House EXIT, Warsaw (2011)
Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 362–367. Springer, Heidelberg (2012)
Zalasiński, M., Cpałka, K.: New approach for the on-line signature verification based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 342–350. Springer, Heidelberg (2013)
Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 493–502. Springer, Heidelberg (2013)
Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 216–230. Springer, Heidelberg (2014)
Zalasiński, M., Cpałka, K., Er, M.J.: A new method for the dynamic signature verification based on the stable partitions of the signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 161–174. Springer, Heidelberg (2015)
Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 231–245. Springer, Heidelberg (2014)
Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 175–188. Springer, Heidelberg (2015)
Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013)
Zhao, W., Lun, R., Espy, D., Reinthal, A.M.: Realtime motion assessment for rehabilitation exercises: integration of kinematic modeling with fuzzy inference. J. Artif. Intell. Soft. Comput. Res. 4(4), 267–285 (2014)
Acknowledgment
The project was financed by the National Science Center on the basis of the decision number DEC-2012/05/B/ST7/02138.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Bartczuk, Ł., Łapa, K., Koprinkova-Hristova, P. (2016). A New Method for Generating of Fuzzy Rules for the Nonlinear Modelling Based on Semantic Genetic Programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-39384-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39383-4
Online ISBN: 978-3-319-39384-1
eBook Packages: Computer ScienceComputer Science (R0)