Abstract
In this paper we present a system intended for content-based image retrieval tightly integrated with a relational database management system. Users can send query images over the appropriate web service channel or construct database queries locally. The presented framework analyses the query image based on descriptors which are generated by the bag-of-features algorithm and local interest points. The system returns the sequence of similar images with a similarity level to the query image. The software was implemented in .NET technology and Microsoft SQL Server 2012. The modular construction allows to customize the system functionality to client needs but it is especially dedicated to business applications. Important advantage of the presented approach is the support by SOA (Service-Oriented Architecture), which allows to use the system in a remote way. It is possible to build software which uses functions of the presented system by communicating over the web service API with the WCF technology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akhtar, Z., Rattani, A., Foresti, G.L.: Temporal analysis of adaptive face recognition. J. Artif. Intell. Soft Comput. Res. 4(4), 243–255 (2014)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Chang, T., Kuo, C.C.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 2(4), 429–441 (1993)
Chaudhuri, S., Narasayya, V.R.: An efficient, cost-driven index selection tool for Microsoft SQL server. VLDB 97, 146–155 (1997)
Chu, J.L., Krzyzak, A.: The recognition of partially occluded objects with support vector machines and convolutional neural networks and deep belief networks. J. Artif. Intell. Soft Comput. Res. 4(1), 5–19 (2014)
Drozda, P., Sopyła, K., Górecki, P.: Online crowdsource system supporting ground truth datasets creation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 532–539. Springer, Heidelberg (2013)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Francos, J., Meiri, A., Porat, B.: A unified texture model based on a 2-D Wold-like decomposition. IEEE Trans. Signal Process. 41(8), 2665–2678 (1993)
Grauman, K., Darrell, T.: Efficient image matching with distributions of local invariant features. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 627–634, June 2005
Huang, J., Kumar, S., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings, pp. 762–768, June 1997
Jagadish, H.V.: A retrieval technique for similar shapes. SIGMOD Rec. 20(2), 208–217 (1991)
Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)
Kanimozhi, T., Latha, K.: An integrated approach to region based image retrieval using firefly algorithm and support vector machine. Neurocomputing 151, 1099–1111 (2015)
Karakasis, E., Amanatiadis, A., Gasteratos, A., Chatzichristofis, S.: Image moment invariants as local features for content based image retrieval using the bag-of-visual-words model. Pattern Recogn. Lett. 55, 22–27 (2015)
Kauppinen, H., Seppanen, T., Pietikainen, M.: An experimental comparison of autoregressive and Fourier-based descriptors in 2D shape classification. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 201–207 (1995)
Kiranyaz, S., Birinci, M., Gabbouj, M.: Perceptual color descriptor based on spatial distribution: a top-down approach. Image Vis. Comput. 28(8), 1309–1326 (2010)
Korytkowski, M., Scherer, R., Staszewski, P., Woldan, P.: Bag-of-features image indexing and classification in Microsoft SQL server relational database. In: 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), pp. 478–482 (2015)
Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)
Larson, P., Clinciu, C., Hanson, E.N., Oks, A., Price, S.L., Rangarajan, S., Surna, A., Zhou, Q.: SQL server column store indexes. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp. 1177–1184. ACM (2011)
Lin, C.H., Chen, H.Y., Wu, Y.S.: Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection. Expert Syst. Appl. 41(15), 6611–6621 (2014)
Liu, G.H., Yang, J.Y.: Content-based image retrieval using color difference histogram. Pattern Recogn. 46(1), 188–198 (2013)
Liu, J.: Image retrieval based on bag-of-words model (2013). arXiv preprint arXiv:1304.5168
Liu, S., Bai, X.: Discriminative features for image classification and retrieval. Pattern Recogn. Lett. 33(6), 744–751 (2012)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004). British Machine Vision Computing 2002
Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)
Murata, M., Ito, S., Tokuhisa, M., Ma, Q.: Order estimation of Japanese paragraphs by supervised machine learning and various textual features. J. Artif. Intell. Soft Comput. Res. 5(4), 247–255 (2015)
Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 2161–2168. IEEE, Computer Society, Washington, DC (2006)
O’Hara, S., Draper, B.A.: Introduction to the bag of features paradigm for image classification and retrieval (2011). arXiv preprint arXiv:1101.3354
Pass, G., Zabih, R.: Histogram refinement for content-based image retrieval. In: Proceedings of the 3rd IEEE Workshop on Applications of Computer Vision, WACV 1996, pp. 96–102, December 1996
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8, June 2007
Rafiei, D., Mendelzon, A.O.: Efficient retrieval of similar shapes. VLDB J. 11(1), 17–27 (2002)
Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: A simultaneous feature adaptation and feature selection method for content-based image retrieval systems. Knowl. Based Syst. 39, 85–94 (2013)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571, November 2011
Shrivastava, N., Tyagi, V.: Content based image retrieval based on relative locations of multiple regions of interest using selective regions matching. Inf. Sci. 259, 212–224 (2014)
Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the 2003 Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 1470–1477, October 2003
Śmietański, J., Tadeusiewicz, R., Łuczyńska, E.: Texture analysis in perfusion images of prostate cancer–a case study. Int. J. Appl. Math. Comput. Sci. 20(1), 149–156 (2010)
Srinivasan, J., De Fazio, S., Nori, A., Das, S., Freiwald, C., Banerjee, J.: Index with entries that store the key of a row and all non-key values of the row. US Patent 6,128,610, 3 October 2000
Veltkamp, R.C., Hagedoorn, M.: State of the art in shape matching. In: Lew, M.S. (ed.) Principles of Visual Information Retrieval, pp. 87–119. Springer, London (2001)
Voloshynovskiy, S., Diephuis, M., Kostadinov, D., Farhadzadeh, F., Holotyak, T.: On accuracy, robustness, and security of bag-of-word search systems. In: IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, p. 902807 (2014)
Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1794–1801, June 2009
Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. In: 2006 Conference on Computer Vision and Pattern Recognition Workshopp, CVPRW 2006, p. 13, June 2006
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 391–405. Springer, Heidelberg (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Staszewski, P., Woldan, P., Korytkowski, M., Scherer, R., Wang, L. (2016). Query-by-Example Image Retrieval in Microsoft SQL Server. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_66
Download citation
DOI: https://doi.org/10.1007/978-3-319-39384-1_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39383-4
Online ISBN: 978-3-319-39384-1
eBook Packages: Computer ScienceComputer Science (R0)