
Using the Guard-Stage-Milestone Notation for
Monitoring BPMN-based Processes

Luciano Baresi, Giovanni Meroni, and Pierluigi Plebani

Politecnico di Milano — Dipartimento di Elettronica, Informazione e Bioingegneria
Piazza Leonardo da Vinci, 32 - 20133 Milano, Italy

[firstname].[lastname]@polimi.it,

Abstract. Business processes are usually designed by means of imper-
ative languages to model the acceptable execution of the activities per-
formed within a system or an organization. At the same time, declara-
tive languages are better suited to check the conformance of the states
and transitions of the modeled process with respect to its actual exe-
cution. To avoid defining models twice from scratch to cope with both
the process enactment and its monitoring, this paper proposes an ap-
proach for translating BPMN process models to E-GSM ones: an exten-
sion of the Guard-Stage-Milestone artifact-centric notation. The paper
also shows how a monitoring engine based on E-GSM specifications can
detect anomalies during the execution of the process and classify them
according to different levels of severity, that is, with respect to the impact
on the outcome of the process.

Keywords: Guard-Stage-Milestone, Artifact-centric processes, BPMN,
Process execution monitoring

1 Introduction

Process modeling represents one of the most crucial activities in Business Process
Management and the goal of the resulting model is twofold. On the one hand, a
business process model describes a portion of the world as it is (or as we want
it to be) using a formalism easy to understand by all the relevant stakeholders
(e.g., process owners and process users). On the other hand, a business process
model — if properly defined in all of its parts — feeds the engine that will enact
its execution. To this aim, imperative control-flow based languages are widely
adopted, as their constructs and the underlying semantics are very intuitive.
Among them, BPMN nowadays represents one of the most used notation adopted
by both business and technical people.

However, when used for monitoring the execution of a process at run-time,
imperative languages manifest a significant limitation: when a violation in the
control flow occurs, an imperative process engine treats such a violation as an
unhandled exception and stops monitoring the process until a user manually fixes
the issue. This is not always desirable, especially when the engine has no control
on the monitored process, which would continue its execution even though the



2

engine stopped. Declarative languages, on the other hand, do not have the notion
of strict control flow. Therefore, declarative engines can both report deviations
in the control flow and continue monitoring the process.

The goal of this paper is to mediate between these two perspectives by propos-
ing a solution to monitor the execution of distributed control-flow processes
modeled in BPMN, that relies on a monitoring system based on the artifact-
centric Guard-Stage-Milestone (GSM) declarative language [6]. In particular,
we start from a BPMN process, which is easy to conceive, and we transform it
into a model defined using E-GSM, our extension of GSM. This transformation
preserves control flow information, but such information, which is prescriptive
in BPMN, becomes descriptive. Deviations from the “original” execution flow
can easily be detected at run-time during the process enactment by analyzing
the artifacts, that contain information about how the process is evolving, and
represent the states through which the process should evolve during execution.

The adoption of E-GSM to drive the process monitoring introduces the fol-
lowing advantages. E-GSM allows one to define conditions both on the pro-
cess and on external data to trigger the execution and termination of activities.
Therefore, the monitoring platform can infer when activities are executed based
on information coming from the environment, thus being not limited to explicit
messages. Furthermore, E-GSM allows one to identify the results of the execu-
tion of the activities within the process model, and consequently it permits the
identification of the activities that are incorrectly executed, if any.

The rest of the paper is structured as follows. Section 2 discusses how we
extended GSM into E-GSM to enable a data-artifact driven process monitoring
solution. Section 3 introduces the set of rules we defined to translate BPMN
elements into equivalent E-GSM ones. Section 4 validates our work by showing
how to apply the approach on a real business process in the domain of logistics.
Section 5 surveys the state of the art, and Section 6 concludes the paper.

2 E-GSM

The GSM notation is a declarative language that allows one to model artifact-
centric processes by defining conditions that determine the activation and termi-
nation of activities, called Stages. With respect to other declarative languages,
like Declare [14], such conditions are not limited to dependencies among activ-
ities. Instead, they are based on events, which can be external (e.g., sent or
received messages), or internal (e.g., termination of activities), to the process.
Starting from the standard GSM notation and our preliminary work [2], we pro-
pose E-GSM, an extension to GSM where we distinguish between Data Flow
Guards and Process Flow Guards and we add Fault Loggers.

The goal of this extension is to include information on the normal flow, that
is, the expected behavior of the process, or happy path, in the artifact-centric
process model. To this aim, the process model includes the dependencies among
activities in terms of control flow. Being a declarative language, E-GSM does not
use control flow information to enforce a specific execution path among activities.



3

Fig. 1. E-GSM meta-model (bottom left), graphical representation (top left) and life-
cycle of a Stage (right).

Instead, it uses such information to let the process engine detect deviations
between the happy path and how the process is actually executed.

The left portion of Fig. 1 shows a simplified version of the meta-model behind
E-GSM, along with the graphical representation of its main elements. The orig-
inal definition of GSM comprises Stages, Guards, and Milestones. A Stage
represents the unit of work that can be executed in a process instance. A Stage
can have one or more nested Stages, or it can be atomic, thus representing a
single task. A Stage may be decorated with one or more Guards and Mile-
stones.

A Guard (Data Flow Guard in E-GSM) is an Event-Condition-Action
(ECA) rule1. If true, the associated Stage is declared opened. A Milestone is
another ECA rule. If true, the Stage is declared closed. A Milestone may also
have an invalidator : a boolean expression that can invalidate the Milestone
and reopen the Stage.

In the proposed extension, a Stage can now also be decorated with Process
Flow Guards and Fault Loggers. A Process Flow Guard is a boolean
expression that predicates on the activation of the Data Flow Guards and
Milestones used to map the expected control flow. The expression is evaluated
once one of the Data Flow Guards of the associated Stage is triggered, and
before the Stage becomes opened. If the expression is true, the Stage complies
with the expected execution, otherwise the Stage has been activated without
respecting the normal flow.

A Fault Logger is an ECA rule. If true, the associated Stage is declared
faulty because something went wrong during the execution of the activity. A

1 An ECA rule is an [on e ] [if c ] expression, that is triggered when an event e
occurs and the condition c is true. When [on e ] is missing, the ECA is triggered
once c becomes true, when [if c ] is missing, the ECA is triggered once e occurs.



4

faulty Stage does not imply its termination, as the termination is only deter-
mined by Milestones.

The right portion of Fig. 1 sketches the lifecycle of an E-GSM Stage orga-
nized around three main orthogonal execution perspectives: outcome, compli-
ance, and status2.

The Execution outcome captures the situation of a Stage, which can be
either regular (none of its Fault Loggers has ever been triggered) or faulty (at
least one of its Fault Loggers has been triggered, A.FLl).

The Execution compliance captures the compliance of each Stage with the
normal flow. A Stage is declared onTime by default. It can become outOfOrder
(according to the normal flow) when one of its Data Flow Guards is triggered
but none of its Process Flow Guards holds (A.DFG and not(A.PFG)). If a
Stage S’ is declared outOfOrder, every other onTime Stage S that would trigger
one of the Process Flow Guards of S’ (S.Mj or Active(S) ∈ S’.PFGk) is
declared skipped. If a Stage is skipped, once one of its Data Flow Guards is
triggered (S.DFGi), it becomes outOfOrder.

The Execution status captures the status of a Stage: unopened, opened or
closed. A Stage is unopened if its Data Flow Guards have never been trig-
gered. A Stage can become opened only if it is unopened or closed and the parent
Stage is opened. In addition, at least one of its Data Flow Guards must be
triggered (S.DFGi). A Stage becomes closed if it is opened and a Milestone is
achieved (+S.Mj), or if the parent Stage becomes closed.

The combination of these three perspectives says that the whole lifecycle
assumes that a Stage is initially onTime, regular, and unopened. Data Flow
Guards drive the change of execution status. Fault Loggers drive the outcome,
while Process Flow Guards are in charge of the compliance. With respect to
Standard GSM, E-GSM interprets reopening a closed Stage as a new iteration
of that process portion. Therefore, once a parent Stage is reopened (i.e., it
moves from closed to opened), the lifecycle of all its child Stages will restart
from scratch.

Thank to these three perspectives, it is possible to detect at runtime when a
deviation in the execution of a process occurs and which stages are involved. This
enables a classification that predicates on the lifecycle of all stages to evaluate
how severely variations during execution affect the outcome of the process. For
example, Table 1 reports a possible classification of severity that can be modified
according to any specific scenario: None, if all activities are executed at the
right time and their execution was successful. Low, if the process terminated,
the expected control flow was not respected, yet no activity was skipped and
they were all successfully executed. Medium-low, if an activity was incorrectly
executed, but the expected control flow was respected. Medium, if the process

2 In this paper we use the the notation introduced in [6], so we write S.DFGi, S.PFGk,
S.FLl to indicate the activation of a Data Flow Guard, Process Flow Guard, or a
Fault Logger associated with Stage S, +S.Mj (-S.Mj) to indicate the achievement (in-
validation) of a Milestone Mj, S.Mj to indicate that Stage S is closed and a Milestone
Mj is achieved, and Active(S) to indicate that Stage S is opened.



5

Table 1. Severity levels. Sx.o, Sx.c and Sx.s indicate the state of stage Sx, along with
the execution outcome, compliance and status respectively.

Severity
Execution

outcome (Sy.o)
Execution

compliance (Sz.c)
Execution

status (Sx.s)

None ∀Sy : Sy.o = regular ∀Sz : Sz.c = onT ime
∀Sx : Sx.s = unopened

∨Sx.s = opened
∨Sx.s = closed

Low ∀Sy : Sy.o = regular ∃Sz : Sz.c = outOfOrder
∀Sx : Sx.s = unopened

∨Sx.s = closed

Medium-low ∃Sy : Sy.o = faulty ∀Sz : Sz.c = onT ime
∀Sx : Sx.s = unopened

∨Sx.s = opened
∨Sx.s = closed

Medium ∀Sy : Sy.o = regular
∃Sz : Sz.c = outOfOrder

∨Sz.c = skipped
∃Sx : Sx.s = opened

Medium-high ∀Sy : Sy.o = regular ∃Sz : Sz.c = skipped
∀Sx : Sx.s = unopened

∨Sx.s = closed

High ∃Sy : Sy.o = faulty
∃Sz : Sz.c = outOfOrder

∨Sz.c = skipped

∀Sx : Sx.s = unopened
∨Sx.s = opened
∨Sx.s = closed

is still in progress and, during execution, the expected control flow was not
respected. Medium-high, if the process terminated and an activity was skipped.
High, if an activity was incorrectly executed and no corrective action was taken
(i.e., at least another activity was either skipped or incorrectly executed).

This classification assumes that all stages have the same importance. How-
ever, weights can be introduced to differentiate the influence of each specific stage
on the process, or metrics taken from the conformance checking domain [18] can
be adopted.

3 Transformation Rules

The aforementioned semantics of E-GSM is then used in 13 transformation
rules [11] to translate a BPMN process model into an E-GSM one.

These transformation rules are applicable to every BPMN process model that
complies with a workflow net [1], that is, the process has only one start event
and only one end event, and it always terminates (soundness). It is worth noting
that the control flow is always captured by Process Flow Guards, and as such
it is never enforced. This allows the E-GSM model to continue monitoring a
process even if violations in the control flow occur.

3.1 Basic Elements

The transformation rules defined for basic elements are presented in Fig. 2.

Rule 1 A BPMN Activity A is translated into a Stage A with one or more Data
Flow Guards (A.DFGi) and one or more Milestones (A.Mj).



6

Fig. 2. BPMN to E-GSM transformation rules for basic elements.

Producing the conditions associated with those Data Flow Guards and
Milestones is far from trivial [3]. They depend on the associated data objects
and, if the activity is a task, on its type (i.e., receive or user task). In case of a
generic task, placeholders A s and A t are associated with, respectively, A.DFG1
and A.M1 to represent the explicit start and termination of the activity. If the
activity is a sub-process, A.DFGi and A.Mj are then derived from the structure
of the sub-process and from its elements, as explained in the following.

Rule 2 A BPMN Start, End or Intermediate Event e is translated into a Stage
E where E.DFG1 and E.M1 have the occurrence of the event as condition.

Rule 3 A BPMN Activity A with a non-interrupting Boundary Event e attached
is translated into a Stage A according to Rule 1 with A.FL1 having the occurrence
of the event as condition (i.e., on e).

Rule 4 A BPMN Activity A with an interrupting Boundary Event e attached is
translated into a Stage A according to Rule 1 with an additional Milestone A.Me

and A.FL1 having the occurrence of the event as condition.

3.2 Normal Flow

The combination of the above rules for basic elements allows one to translate
well-structured business process models [17]. In particular, we focus on five types
of blocks, defined starting from the classical control flow patterns [19]:

– A sequence block is made of linked activities, events and other blocks without
splits or merges. It corresponds to pattern sequence.

– A parallel block organizes activities, events, and other blocks in two or more
parallel threads resulting from the combination of patterns parallel split and
synchronization.

– A conditional exclusive block organizes activities, events, and other blocks
in two or more branches resulting from a combination of patterns exclusive
choice and simple merge.

– A conditional inclusive block organizes activities, events, and other blocks in
two or more branches resulting from a combination of patterns multi-choice
and structured synchronized merge.



7

– A loop block organizes activities, events, and other blocks according to pat-
tern structured loop.

For each of these blocks, we delivered proper transformation rules in [11]. A
graphical representation of them is reported in Fig. 3. Due to space constraints,
in this paper we will only describe in detail how sequence, conditional exclusive,
and loop blocks are translated.

Rule 5 A sequence block corresponds to a Stage Seq that includes Sx inner
Stages obtained by applying the transformation rules to all the elements (i.e.,
Activities, Events, inner blocks) that belong to the block.

– In addition to the existing Process Flow Guards, each inner stage has Sx.PFG1
to state that none of its Milestones is achieved, and at least one of the Mile-
stones of the element that directly precedes it (if present) is achieved.

– Seq has a set Seq.DFG that includes all Sx.DFGi, and a Milestone Seq.M1

that requires that, for all Sx, at least one Sx.Mj be achieved.

Rule 6 A conditional exclusive block is translated into a Stage Exc that includes
all the Stages obtained by applying Rule 5 to all its branches, which result in Sx
inner Stages.

– For each Sx, Sx.PFG1 is added to check that no Sx.Mj has already been
achieved, that the condition on the branch from which Sx is produced (if
present) is satisfied, and that none of the other inner Stages is opened (i.e.,
not Active(Sy) where y 6=x).

– Exc has a set Exc.DFG that includes all Sx.DFGi, and a Milestone Exc.M1 that
requires that, for at least one Sx, one Sx.Mj be achieved, and the condition
on the branch from which Sx is produced (if present) be satisfied, as long as
none of the other inner Stages is opened.

Rule 7 A loop block is translated into two Stages, Ite and Loop. Ite includes
Sx inner Stages obtained by applying Rule 5 to all the branches within the loop
block. One of these stages is a forward Stage, that is, its control flow goes in the
same direction as the control flow that includes the loop block. The others are
backward Stages.

– For all the inner Stages, Sx.PFG1 is added to check that no Sx.Mj is already
achieved. Moreover, if Sx is a backward stage, Sx.PFG1 also requires that
the condition on the branch (if present) be satisfied, and that one of the
Milestones of the forward stage be achieved.

– Ite has a set Ite.DFG that includes all Sx.DFGi, and two Milestones, where:
• Ite.M1 requires that one of the Milestones of the forward Stage be achieved

and the exit condition of the loop (if present) be satisfied, as long as no
backward Stage is opened.
• Ite.M2 requires that one of the Milestones of the forward Stage be achieved

and, for at least a backward Stage, one of its Milestones be achieved and
the condition on that branch (if present) be satisfied, as long as none of
the other backward Stages is opened.



8

Fig. 3. BPMN to E-GSM transformation rules for normal flow blocks (due to space
constraints, the conditional inclusive block is not presented).

Stage Loop includes Ite and has Loop.DFG = Ite.DFG and Loop.M = on Ite.M1

(i.e., the process can exit the loop).

The iteration Stage Ite has no Process Flow Guards since it is supposed
to be executed multiple times and, every time it becomes opened, a new iteration
of the loop is carried out. Thus, Ite is opened when at least one of its inner Stages
can be opened too, and it is closed when either the process can exit the loop
(Ite.M1 is achieved), or when an iteration is complete (Ite.M2 is achieved).

3.3 Exceptional Flow

BPMN supports the management of foreseen exceptions through boundary events,
that is, events directly attached to activities. These events, like split gateways,
determine a branching of the control flow into an exceptional flow, which leaves
the boundary event, and a normal flow, to continue the execution from the ac-
tivity. If the foreseen exception occurs while executing the activity, the attached
boundary event activates the exceptional flow. A dedicated set of rules shown
in Fig. 4 is thus required to preserve this behavior in E-GSM models. Again, we
refer to [11] for the details.

Interrupting boundary events cause the normal and exceptional flows to be
mutually exclusive, therefore we expect them to be merged by an exclusive merge
gateway at the end. This requires that two additional blocks, called forward ex-
ception handling and backward exception handling, respectively, be defined. The
forward exception handling block comprises an interrupting boundary event, and
a simple merge, defined with a BPMN exclusive gateway, that merges the ex-
ceptional control flow and the portion of the normal control flow that follows
the activity to which the boundary event is attached. Its behavior is similar
to the one of the conditional exclusive block, with the exception of the branch
condition, which predicates on the achievement of the milestone derived from
the boundary event. The backward exception handling block comprises an in-
terrupting boundary event and a simple merge, defined with a BPMN exclusive



9

Fig. 4. BPMN to E-GSM transformation rules for handling exceptions.

gateway, that merges the exceptional control flow and the portion of the normal
control flow that precedes the activity to which the boundary event is attached.
This block produces a loop that allows one to re-execute part of the normal
control flow if the boundary event is triggered, and therefore it is translated
similarly to a loop block.

In BPMN, boundary events could also be non interrupting, that is, they ac-
tivate the exceptional control flow without terminating the associated activity.
Therefore, the elements within the exceptional control flow can run in paral-
lel with the normal flow that starts from the activity the boundary event is
associated with. Since we expect these potentially simultaneous control flows
be merged by an inclusive merge gateway, the transformation requires an addi-
tional block, called non interrupting exception handling block. This new block
comprises a non interrupting boundary event to split the execution flow into
an exceptional flow and the continuation of the normal one, and a structured
synchronized merge, defined with a BPMN inclusive gateway, to merge the two
flows in case the exception occurred.

4 Validation

The transformation rules introduced in the previous section allow any well-struc-
tured BPMN process model to be translated into E-GSM. To prove it, we devel-
oped a BPMN to E-GSM prototype translator3, where the transformation rules
are implemented in ATL (ATLAS Transformation Language [7]), and validated
—and refined— the proposed rules against several BPMN business processes
with different levels of complexity. A formal verification about the equivalence
between BPMN processes and their correspondent E-GSM is under study and

3 The tool is publicly available at https://bitbucket.org/polimiisgroup/

bpmn2egsm.

https://bitbucket.org/polimiisgroup/bpmn2egsm
https://bitbucket.org/polimiisgroup/bpmn2egsm


10

Fig. 5. BPMN and E-GSM models of the example shipping process.

it aims to check if all the traces that a BPMN process can produce are also
considered as satisfied in the E-GSM model.

Among these test processes, here we concentrate on an example taken from
the logistics domain, which is shown at the top of Fig. 5, to better explain the ad-
vantages of adopting E-GSM to monitor the execution of complex (distributed)
processes. A pharmaceutical company M has to ship drugs (that are highly sus-
ceptible to temperature variations) to one of its customers N . To do so, it relies
on two shipping companies R and T for, respectively, rail and truck transporta-
tion, and on an inland terminal I for changing means. The shipping process starts
when a shipment request by N is received, and comprises four main phases: (i)
loading goods into a thermally-insulated shipping container; (ii) shipping such a
container to I by rail; (iii) temporarily storing the container in a temperature-
controlled warehouse; (iv) delivering the goods to the customer’s site by truck.
Before starting phase (ii), an inventory report of the contents of the container
must be produced, and it must be compared with the bill of materials included
with the shipment request. If some products are missing, they must be located
and loaded onto the container, and a new report must be produced. Furthermore,
if the goods are exposed to a temperature higher than 20◦C during phase (iii),



11

they must be discarded and the whole process must be aborted. Our translator
produces the E-GSM model shown at the bottom of Fig. 5.

Since all these activities interact with the shipping container, we can think
of it as the process coordinator (i.e., the element that interacts with all the par-
ties and has complete visibility on the whole process). To make the container
process-aware, we can exploit the Internet of Things paradigm by equipping it
with a single board computing device, sensors and a network interface, thus
transforming it into a smart object (i.e., smart container). However, being the
container completely passive, it cannot enforce the execution flow modeled in
the process, and it needs information to identify when each activity is being exe-
cuted. For this reason, a traditional process engine would be unsuited to monitor
this process. On the other hand, an E-GSM engine4 running onto the smart con-
tainer would solve this problem: By predicating on on-board sensor values or
explicit messages, Data Flow Guards, Process Flow Guards, Milestones
and Fault Loggers can be triggered, and the execution of the process be moni-
tored. This way, once a violation in the execution occurs, the E-GSM engine can
report to stakeholders which activities are affected, and how severely the whole
process is affected by such an incident.

To show how process monitoring can take advantage of the E-GSM model,
we describe three possible scenarios.

4.1 An Error-Free Execution

Once the shipment request is received, Seq1.DFG1 is triggered and, consequently,
Seq1 becomes opened (thus starting the process). This first triggers Shipment-

Req.PFG1, then ShipmentReq.DFG1, which causes ShipmentReq to become opened,
and finally ShipmentReq.M1 be achieved, which moves ShipmentReq to the closed
state, and triggers Loop.PFG1.

When R loads the goods onto the container, a notification is sent to the en-
gine, which triggers Loop.DFG1, then Ite.DFG1, Seq2.PFG1, Seq2.DFG1, Load-
Goods.PFG1, and finally LoadGoods.DFG1, which moves Loop, Ite, Seq2 and
LoadGoods to the opened state. After finishing loading the goods, the operator
sends another notification, thus making LoadGoods.M1 be achieved, which trig-
gers Inventory.PFG1 and moves LoadGoods to the closed state. It then produces
the inventory of the loaded goods, which triggers Inventory.DFG1, and then
makes Inventory.M1 be achieved, which makes Seq2.M1 achieved too, causing
Inventory and Seq2 to move to the closed state. Being the inventory consistent
with the bill of materials included in the shipment request, also Ite.M1 and,
consequently, Loop.M1, are achieved, moving Ite and Loop to the closed state,
and triggering ShipToTerminal.PFG1.

Once the rail shipping begins, R sends a notification, which triggers ShipTo-
Terminal.DFG1 and moves ShipToTerminal to the opened state. When the con-
tainer is delivered to I, another notification is sent, which makes ShipToTerminal-
.M1 become achieved, moving ShipToTerminal to the closed state and triggering

4 A prototype E-GSM engine is currently under development



12

StoreInWarehouse.PFG1. Similarly I sends a notification when the container is
put in the warehouse and when T is ready to pick it up, thus triggering StoreIn-

Warehouse.DFG1, achieving StoreInWarehouse.M1, triggering EExc.PFG1, and
moving StoreInWarehouse to the opened state at first, and then to the closed
state. After hooking the container to its truck, a notification is sent by T .
That notification triggers EExc.DFG1, then ShipToCustomer.PFG1, and finally
ShipToCustomer.DFG1, thus moving stages EExc and ShipToCustomer to the
opened state. Once T delivers the goods to N , another notification is sent.
That notification causes the achievement of ShipToCustomer.M1, which makes
EExc.M1 become achieved too, thus moving ShipToCustomer and EExc to the
closed state and triggering DeliveryOutcome.PFG1.

Finally, once the goods are inspected by N , a report of the shipment is pro-
duced, which triggers DeliveryOutcome.DFG1, moving DeliveryOutcome to the
opened state, and then causes the achievement of DeliveryOutcome.M1, which
causes the achievement of Seq1.M1 too, thus moving DeliveryOutcome and Seq1

to the closed state and, since Seq1 represents the whole process, terminating the
monitoring activity. Once the process concludes, N queries the smart container
and finds out that the severity level of the process is None, since all stages are in
state either unopened or closed, their compliance is onTime, and their outcome
is regular. Therefore, N accepts the goods.

4.2 A Catastrophic Execution

A second example shows how the system can monitor an incorrect execution of
the process. During phase (iii), the warehouse cooling system breaks down, and
the temperature of the goods goes beyond 20◦C. Being the container equipped
with a temperature sensor, the E-GSM engine is able to detect such an event and
consequently triggers both StoreInWarehouse.FL1 and StoreInWarehouse.Me,
which move StoreInWarehouse to the faulty and closed states. This changes
the severity level of the process from none to medium-low, since a faulty stage
exists, but all stages are still onTime. Being StoreInWarehouse closed and
StoreInWarehouse.Me achieved, DiscardGoods.PFG1 is also triggered.

Instead of discarding the goods, I ignores that accident, and delivers the
goods to N . This moves ShipToConsumer to state outOfOrder, since ShipTo-

Consumer.DFG1 is triggered before ShipToConsumer.PFG1 becomes active. This
causes the severity level of the process to become high, since there are both a
faulty stage (StoreInWarehouse), and an outOfOrder one (ShipToConsumer).

Once N receives the goods, it queries the smart container and, since the
severity level of the process is high, decides to immediately inspect its content,
thus discovering that the goods have been spoiled. Therefore, it sends them back
to M . In turn, M identifies that StoreInWarehouse is in the faulty state, and
that ShipToConsumer is outOfOrder. Thank to this information, M is able to
charge I a penalty for having spoiled the goods and not having reported that
accident. Note that had T queried the smart container, it would have seen that
the severity level was medium-low, since StoreInWarehouse was in faulty state,
and could have avoided delivering the container to N .



13

4.3 A Troublesome yet Recoverable Execution

Let us now focus on a less critically incorrect execution of the process. In this
case, the inventory of the container is not consistent with the bill of materials,
which causes LocateMissingGoods.PFG1 to be triggered. However, R does not
check the inventory and immediately begins shipping the container to I, which
moves ShipToTerminal to the outOfOrder state, since ShipToTerminal.DFG1 is
triggered before ShipToTerminal.PFG1 becomes active. This changes the sever-
ity level of the process from none to medium, as there are both opened stages
(Seq1, Loop and Ite) and an outOfOrder one (ShipToTerminal).

Once N receives the goods, it queries the smart container and finds out that
the severity level is still medium (since the missing goods were not collected and
loaded onto the container, stages Seq1, Loop and Ite are still opened). So, it in-
spects the contents, discovers that some of them are missing, and asks M to ship
the missing ones for free. By querying the smart container, M finds out that, even
though the inventory did not match the shipping request, missing goods were
never collected and loaded onto the smart container (i.e., LocateMissingGoods
has not been executed even though LocateMissingGoods.PFG1 was satisfied),
and the shipment continued anyway (i.e., ShipToTerminal is in state outO-
fOrder). Because of this information, M can blame R for having shipped the
goods without checking the inventory first. Note that the severity level (medium)
reflects the results of the process: being at least part of the goods successfully
delivered, M did not experience a complete loss as in the previous case, where
all the goods were spoiled, and the truck shipment was done pointlessly.

5 Related Work

Köpke et al. [8] propose transformation rules that transform a BPMN process
model into a GSM equivalent. While we have borrowed from these rules the
idea of transforming blocks into nested Stages, our transformation rules produce
completely different expressions for Guards and Milestones. The reason behind
such a discrepancy is that we are interested in identifying control flow violations,
and not in forcing the process to rigidly follow a given execution flow, which
is what is pursued in [8]. Eshuis et al. [4] define a semi-automated approach
that starts from UML Activity Diagrams and produces a data-centric process
model in GSM. They capture the lifecycle of the data artifacts referred to in the
UML process model, and exploit control flow information to render it in GSM.
Similarly, Kumaran et al. [9] and Meyer et al. [13] propose a language-agnostic
algorithm to derive the lifecycle of artifacts based on an imperative process
model. This is possible as long as each activity has input and output information
entities explicitly defined in the model. Our work differentiates from [4], [9],
and [13], which use control flow information to model the interactions among
data artifacts, by keeping such information in the target process model to assess
compliance. Popova et al. [16] define a translator from Petri Nets to GSM. The
main purpose of that translator is to transform the outcome of process mining
algorithms, which is often represented as a Petri Net, to a GSM model. This



14

way, process mining techniques can be used to identify business artifacts that
the translator represents in a language that is easier to understand by domain
experts than Petri Nets.

Concerning the integration of both activity and data-centric perspectives in
business processes, Künzle et al. [10] propose a framework that maps portions
of data structures to activities and use control flow information to define how
such data objects should be manipulated. Similarly, Meyer et al. [12] propose a
methodology to model both the control flow and data dependencies by extending
BPMN data artifacts to define dependecines among all data items manipulated
in a process. Both [10] and [12] use control flow information in a prescriptive
way, while E-GSM uses it in a descriptive way to detect deviations from the
original definitions during execution.

Conformance checking is the discipline that aims at identifying inconsisten-
cies among a process model and its execution [18]. To do so, the process model
is checked against high level execution logs, which report when and if activi-
ties have been executed. Our solution differs from this approach as it is able to
autonomously identify when activities start or end, without relying on an exe-
cution log. Furthermore, it is able to detect deviations at runtime, whereas most
process compliance techniques are applicable only when the process terminates.

6 Conclusions and Future Work

This paper extends the Guard-Stage-Milestone (GSM) notation to embed con-
trol flow information in the process model definition, presents a solution for
transforming BPMN models into equivalent E-GSM ones, and shows how the
derived E-GSM process model can be used to identify when activities are ex-
ecuted, to keep track of violations in the execution flow, and to evaluate the
overall execution of a process along with different levels of severity.

As for our future work, we will investigate how to improve Rule 1 and Rule 2
by taking into account the nature of activities (i.e., receive tasks or user tasks)
and events (i.e., timer, signal, etc.), and their associated data objects. We will
also propose additional transformation rules to derive the E-GSM Information
Model, which is not considered in this work, from data objects and implicit
information defined in BPMN process models, which may also influence the
definition of severity levels. In parallel, we will continue applying the proposed
solution and assessing it on real industrial examples.

Acknowledgments

This work has been partially funded by the Italian Project ITS Italy 2020 under
the Technological National Clusters program.

References

1. Van der Aalst, W.M.: Verification of workflow nets. In: Application and Theory of
Petri Nets 1997, pp. 407–426. Springer (1997)



15

2. Baresi, L., Meroni, G., Plebani, P.: A gsm-based approach for monitoring cross-
organization business processes using smart objects (2015), accepted for publica-
tion

3. Cabanillas, C., Baumgrass, A., Mendling, J., Rogetzer, P., Bellovoda, B.: Towards
the enhancement of business process monitoring for complex logistics chains. In:
Business Process Management Workshops. pp. 305–317. Springer (2014)

4. Eshuis, R., Van Gorp, P.: Synthesizing data-centric models from business process
models. Computing pp. 1–29 (2015)

5. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal,
S.: Declarative versus Imperative Process Modeling Languages: The Issue of Under-
standability. In: Enterprise, Business-Process and Information Systems Modeling.
pp. 353–366. Springer (2009)

6. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, Fenno(Terry), I., Hobson,
S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing
the guard-stage-milestone approach for specifying business entity lifecycles. In:
Web Services and Formal Methods, Lecture Notes in Computer Science, vol. 6551,
pp. 1–24. Springer (2011)

7. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool.
Science of computer programming 72(1), 31–39 (2008)

8. Köpke, J., Su, J.: Towards ontology guided translation of activity-centric processes
to gsm (2015), accepted for publication

9. Kumaran, S., Liu, R., Wu, F.Y.: On the duality of information-centric and activity-
centric models of business processes. In: Advanced Information Systems Engineer-
ing. pp. 32–47. Springer (2008)

10. Künzle, V., Reichert, M.: Philharmonicflows: towards a framework for object-aware
process management. Journal of Software Maintenance and Evolution: Research
and Practice 23(4), 205–244 (2011)

11. Meroni, G., Baresi, L., Plebani, P.: Translating BPMN to E-GSM: specifica-
tions and rules. Tech. rep., Politecnico di Milano (2016), http://hdl.handle.net/
11311/976678

12. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex
data dependencies in business processes. In: Business Process Management Pro-
ceedings. pp. 171–186. Springer (2013)

13. Meyer, A., Weske, M.: Activity-centric and artifact-centric process model
roundtrip. In: BPM Workshops. pp. 167–181. Springer (2013)

14. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: Full support for loosely-
structured processes. In: Enterprise Distributed Object Computing Conference
Proceedings. pp. 287–287. IEEE (2007)

15. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imper-
ative versus Declarative Process Modeling Languages: An Empirical Investigation.
In: Business Process Management Workshops. pp. 383–394. Springer (2012)

16. Popova, V., Dumas, M.: From petri nets to guard-stage-milestone models. In: Busi-
ness Process Management Workshops. pp. 340–351. Springer (2013)

17. Reichert, M., Weber, B.: Enabling flexibility in process-aware information systems:
challenges, methods, technologies. Springer Science & Business Media (2012)

18. Rozinat, A., van der Aalst, W.M.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

19. Russell, N., Hofstede, A.H.M.T., Mulyar, N.: Workflow controlflow patterns: A
revised view. Tech. Rep. BPM-06-22, BPM Center Report, BPMcenter.org (2006)

http://hdl.handle.net/11311/976678
http://hdl.handle.net/11311/976678

	Using the Guard-Stage-Milestone Notation for Monitoring BPMN-based Processes

