Skip to main content

Properties of the Island-Based and Single Population Differential Evolution Algorithms Applied to Discrete-Continuous Scheduling

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2016 (IDT 2016)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 56))

Included in the following conference series:

Abstract

In this paper we have studied by experiment the properties of two models of the DE search: a model based on a single population, and a model based on multiple populations, known as the island model (IBDEA). We consider two versions of the island model: with migration of individuals between islands and without migration. We investigated how the effectiveness of models depends on such parameters as the size of a single population, and in the case of the island model, also the number of islands and migration rate between them. The general conclusion is that both models can be equally effective when used with proper parameter settings, which have been determined by the experiment. In addition, conditions for higher effectiveness of the IBDEA were discussed. The discrete-continuous scheduling with continuous resource discretisation was used as the test problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alba, E., Troya, J.: Analysis of synchronous and asynchronous parallel distributed genetic algorithms with structured and panmictic Islands. In: Rolim. J. et al., (eds.) In: Proceedings of the 10th Symposium on Parallel and Distributed Processing, pp. 248–256. San Juan, Puerto Rico, USA, 12–16 April 1999

    Google Scholar 

  2. Bartusch, M., Rolf, H.M., Radermacher, F.J.: Scheduling project networks with resource constraints and time windows. Ann. Oper. Res. 16, 201–240 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belding, T.C.: The distributed genetic algorithm revisited. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 114–121. Morgan Kaufmann, San Francisco, CA (1995)

    Google Scholar 

  4. Cantu-Paz, E.: Migration policies, selection pressure, and parallel evolutionary algorithms. J. Heuristics 7(4), 31–334 (2001)

    Article  MATH  Google Scholar 

  5. Cantu-Paz, E., Goldberg, D.E.: Are multiple runs of genetic algorithms better than one? In: Proceedings of the Genetic and Evolutionary Computation Conference (2003)

    Google Scholar 

  6. Damak, N., Jarboui, B., Siarry, P., Loukil, T.: Differential evolution for solving multi-mode resource-constrained project scheduling problems. Comput. Oper. Res. 36(9), 2653–2659 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jędrzejowicz, P., Skakovski, A.: Structure vs. efficiency of the cross-entropy based population learning algorithm for discrete-continuous scheduling with continuous resource discretisation. In: Czarnowski, I., Jędrzejowicz, P., Kacprzyk, J. (eds.) Studies in Computational Intelligence. Agent-Based Optimization, vol. 456, pp. 77–102. Springer (2013)

    Google Scholar 

  8. Jędrzejowicz, P., Skakovski, A.: Population learning with differential evolution for the discrete-continuous scheduling with continuous resource discretisation. In: IEEE International Conference on Cybernetics (CYBCONF), pp. 92–97. Lausanne Switzerland, 13–15 June 2013

    Google Scholar 

  9. Jędrzejowicz, P., Skakovski, A.: Island-based differential evolution algorithm for the discrete-continuous scheduling with continuous resource discretisation. Procedia Comput. Sci. 35, 111–117 (2014)

    Article  Google Scholar 

  10. Józefowska, J., Węglarz, J.: On a methodology for discrete-continuous scheduling. Europ J Oper Res. 107–2, 338–353 (1998)

    Article  MATH  Google Scholar 

  11. Józefowska, J., Różycki, R., Waligóra, G., Węglarz, J.: Local search metaheuristics for some discrete-continuous scheduling problems. Europ J Oper Res 107–2, 354–370 (1998)

    Article  MATH  Google Scholar 

  12. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Solving discrete-continuous scheduling problems by Tabu Search. In: 4th Metaheuristics International Conference MIC’2001, Porto, Portugal, pp. 667–671, 16–20 July 2001

    Google Scholar 

  13. Krink, T., Mayoh, B.H., Michalewicz, Z.: A PACHWORK model for evolutionary algorithms with structured and variable size populations. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1321–1328. Orlando, Florida, USA, Morgan Kaufmann, (1999)

    Google Scholar 

  14. Muhlenbein, H.: Evolution in time and space: the parallel genetic algorithm. In: Rawlins, G. (ed.) FOGA-1. pp. 316–337. Morgan Kaufman (1991)

    Google Scholar 

  15. Pandey, H.M., Chaudharyb, A., Mehrotra, D.: A comparative review of approaches to prevent premature convergence in GA. Appl. Soft Comput. 24, 1047–1077 (2014)

    Article  Google Scholar 

  16. Różycki, R.: Zastosowanie algorytmu genetycznego do rozwiązywania dyskretno-ciągłych problemów szeregowania. PhD diss, Poznań University of Technology, Poland (2000)

    Google Scholar 

  17. Sekaj, I.: Robust parallel genetic algorithms with re-initialisation. In: Proceedings of Parallel Problem Solving from Nature—PPSN VIII. 8th International Conference, LNCS, vol. 3242, pp. 411–419. Springer, Birmingham, UK, 18–22 Sept 2004

    Google Scholar 

  18. Skolicki, Z.: An analysis of Island models in evolutionary computation. In: Proceedings of GECCO’05, pp. 386–389. Washington, DC, USA, 25–29 June 2005

    Google Scholar 

  19. Skolicki, Z., Kenneth, D.J.: The influence of migration sizes and intervals on Island models. In: Proceedings of GECCO’05, pp. 1295–1302. Washington, DC, USA, 25–29 June 2005

    Google Scholar 

  20. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Opt. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Whitley, D., Starkweather, T.: GENITOR II: a distributed genetic algorithm. J. Exper. Theor. Artif. Intel. 2, 33–47 (1990)

    Article  Google Scholar 

  22. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: on separability, population size and convergence. J. Comp. and Infor. Tech. 7–1, 33–47 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Skakovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jędrzejowicz, P., Skakovski, A. (2016). Properties of the Island-Based and Single Population Differential Evolution Algorithms Applied to Discrete-Continuous Scheduling. In: Czarnowski, I., Caballero, A., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2016. IDT 2016. Smart Innovation, Systems and Technologies, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-39630-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39630-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39629-3

  • Online ISBN: 978-3-319-39630-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics